
An Introduction to Programming
with

ECMA-55 Minimal BASIC

John Gatewood Ham

August 30, 2021

Copyright © 2016,2017,2018,2019,2020,2021 by John Gatewood Ham. Permission
is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section in Appendix F entitled
“GNU Free Documentation License”.

Acknowledgments

I would like to thank Narongsak Chusinchinnapat for his in-depth technical review
of a draft of this book. I would also like to thank Kanjana Eiamsaard for her
feedback on first drafts of two chapters of this document. I would also like to thank
Arthit Archdet for submitting a homework program that proved I had not correctly
implemented array subscript rounding. I also want to thank the students from
Laos who used drafts of the book in a classroom environment:

• Thitmany Sisavath
• Vilaikone Phanthasomchit
• Khamkhen Vilayphone
• Syvixay Phachansily
• Soulisack Bounmiphone
• Saythong Phamoungkhoun
• Khankham Lorkhamxay

Finally, I would like to thank Doug Kearns for his bug reports and patches.

Contents
Page

List of Figures iv

List of Tables ix

Preface xi

1 Introduction 1

2 HELLO, WORLD! 5

3 Temperature Conversion 9
3.1 Convert Celsius to Fahrenheit . 9
3.2 Convert Fahrenheit to Celsius . 11

4 Scalar Variables and Constants 15

5 Generating Sequences 21
5.1 Loops . 24
5.2 FOR Loops . 31
5.3 Summary . 33

6 More Series 37
6.1 Factorials . 37
6.2 Fibonacci Numbers . 43
6.3 Taylor Series . 47

7 Random Numbers 51

8 Multi-way Branching 57
8.1 Implementation of multi-way branch using IF 58
8.2 Implementation of multi-way branch using ON. . . GOTO 60

9 Multicolumn Output 63
9.1 First Draft . 63
9.2 Second Draft . 66
9.3 Third Draft . 69
9.4 Final Program . 72

i

ii Contents

10 Arrays 79
10.1 Average Value . 80
10.2 Maximum Value . 83
10.3 More About Subscripts . 87

11 Including Data Within A Program 91
11.1 A simple example using READ and DATA 91
11.2 Three ways to read lists of data . 94

12 Sequential Search 99
12.1 The Algorithm . 99
12.2 Implementation in ECMA-55 Minimal BASIC 104

13 Subroutines 107

14 Bubble Sort 113
14.1 The Algorithm . 113
14.2 Implementation in ECMA-55 Minimal BASIC 118

15 Binary Search 121
15.1 Binary Search Example 1 . 122
15.2 Binary Search Example 2 . 123
15.3 Binary Search Example 3 . 124
15.4 Binary Search in Detail . 126
15.5 Performance of Binary Search . 127
15.6 Implementation in ECMA-55 Minimal BASIC 130

16 Two-Dimensional Arrays 133

17 User-defined Functions 145

18 Singly Linked Lists 149
18.1 The Dynamic Memory Concept . 150
18.2 Storing a linked list in a matrix . 153
18.3 Traversing the linked list . 155
18.4 Initializing the heap . 157
18.5 Accessing an individual node . 159
18.6 Updating field values of a node . 160
18.7 Appending a node to a linked list 162
18.8 Removing a node from a linked list 167
18.9 Implementation in ECMA-55 Minimal BASIC 172

19 Summary 179

Contents iii

A The bas55 Interpreter 181

B The ecma55 Compiler 185

C BASIC Statements 187

D BASIC Numeric Functions 197

E Flowcharts 205

F GNU Free Documentation License 219
1. APPLICABILITY AND DEFINITIONS 219
2. VERBATIM COPYING . 221
3. COPYING IN QUANTITY . 222
4. MODIFICATIONS . 222
5. COMBINING DOCUMENTS . 224
6. COLLECTIONS OF DOCUMENTS 225
7. AGGREGATION WITH INDEPENDENT WORKS 225
8. TRANSLATION . 226
9. TERMINATION . 226
10. FUTURE REVISIONS OF THIS LICENSE 226
11. RELICENSING . 227
ADDENDUM: How to use this License for your documents 227

Index 229

List of Figures
Page

Figure 1.1: Sample Flowchart . 2
Figure 2.1: Hello World Flowchart . 5
Figure 2.2: Hello World Program . 5
Figure 2.3: Hello World Program Output 6
Figure 3.1: Flowchart for Converting °C to °F 10
Figure 3.2: Program Celsius to Fahrenheit 10
Figure 3.3: Program Celsius to Fahrenheit Output for 0°C 10
Figure 3.4: Program Celsius to Fahrenheit Output for 43°C 10
Figure 3.5: Flowchart Symbols . 11
Figure 3.6: Flowchart for Converting °F to °C 12
Figure 3.7: Program Fahrenheit to Celsius 12
Figure 3.8: Program Fahrenheit to Celsius Output for 0°F 12
Figure 3.9: Program Fahrenheit to Celsius Output for 43°F 12
Figure 4.1: Scalar Variables are Addresses 15
Figure 4.2: Program Fahrenheit to Celsius with Comments 17
Figure 5.1: Flowchart 1 . 22
Figure 5.2: Program 1 . 22
Figure 5.3: Program 1 output . 22
Figure 5.4: Flowchart 2 . 23
Figure 5.5: Flowchart 3 . 24
Figure 5.6: Flowchart 4 . 25
Figure 5.7: Flowchart 5 . 27
Figure 5.8: Program Source Version 1 . 27
Figure 5.9: Program Output . 28
Figure 5.10: Flowchart 6 . 29
Figure 5.11: Program Source Version 2 . 29
Figure 5.12: Flowchart 7 . 30
Figure 5.13: Program Source Version 3 . 31
Figure 5.14: Program Source Version 4 . 32
Figure 5.15: Program Source Version 5 . 33
Figure 5.16: Output of Version 5 Program 33
Figure 6.1: Factorial Series Flowchart . 38
Figure 6.2: Factorial Program Source . 39
Figure 6.3: Factorial Program Output . 39
Figure 6.4: Nicer Factorial Series Flowchart 42

iv

List of Figures v

Figure 6.5: Best Possible Factorial Output 43
Figure 6.6: Ugly Factorial Output . 43
Figure 6.7: Nicer Factorial Program Source 43
Figure 6.8: Fibonacci Sequence Flowchart 45
Figure 6.9: Fibonacci Sequence Program Source 45
Figure 6.10: Fibonacci Sequence Program Output 46
Figure 6.11: Taylor Series Cosine Source 48
Figure 6.12: Taylor Series Cosine Flowchart 49
Figure 7.1: High-low flowchart . 51
Figure 7.2: High-Low Program . 52
Figure 7.3: Improved High-low flowchart 53
Figure 7.4: Improved High-Low Program 54
Figure 7.5: Improved High-Low Program Output 54
Figure 8.1: Five-way branch flowchart . 57
Figure 8.2: Five one-way branches flowchart 58
Figure 8.3: Five one-way IF statements 59
Figure 8.4: Five one-way IF statements (alternate solution) 59
Figure 8.5: ON . . . GOTO statement . 60
Figure 8.6: One five-way ON. . . GOTO statement 60
Figure 9.1: Five column program flowchart 64
Figure 9.2: Program for five column output 65
Figure 9.3: Five column output when not a multiple of 5 65
Figure 9.4: Five column output for a multiple of 5 65
Figure 9.5: Improved five column program flowchart 67
Figure 9.6: Improved program for five column output 68
Figure 9.7: Even better five column program flowchart 70
Figure 9.8: Even better program for five column output 71
Figure 9.9: Five column failure . 71
Figure 9.10: Full-featured multicolumn program flowchart (1 of 2) 74
Figure 9.11: Full-featured multicolumn program flowchart (2 of 2) 75
Figure 9.12: Full-featured multicolumn program 76
Figure 9.13: Full-featured Multicolumn Program Output 77
Figure 10.1: Zero-based Array A with 9 elements 79
Figure 10.2: Compute Average Value Flowchart 81
Figure 10.3: Compute Average Value . 82
Figure 10.4: Compute Average Value Program Output 82
Figure 10.5: One-based Array A with 9 elements 83
Figure 10.6: Find Maximum Value Flowchart 84
Figure 10.7: Find Maximum Value . 86
Figure 10.8: Find Maximum Value Program Output 86
Figure 10.9: Use of non-integral subscripts 87
Figure 10.10: Use of non-integral subscripts2 88

vi List of Figures

Figure 10.11: Using logical non-integral subscripts 89
Figure 11.1: Load Array With Data Flowchart 92
Figure 11.2: READ and DATA example . 93
Figure 11.3: READ and DATA Program Output 93
Figure 11.4: Example of reading a list of data three different ways 95
Figure 11.5: Output of program in figure 11.4 96
Figure 12.1: Sequential search for X=5 in array A 100
Figure 12.2: Sequential search for X=-1 in array A 101
Figure 12.3: Sequential search for X=4 in array A 101
Figure 12.4: Sequential Search Flowchart for N elements 103
Figure 12.5: Sequential Search Program . 105
Figure 13.1: Subroutine Example Flowchart (1 of 2) 108
Figure 13.2: Subroutine Example Flowchart (2 of 2) 109
Figure 13.3: Subroutine Example Program 110
Figure 14.1: Bubble sort flowchart for N elements 117
Figure 14.2: Bubble sort program . 119
Figure 15.1: Flowchart for iterative binary search of array of N elements . . 127
Figure 15.2: O (n) Graphs . 129
Figure 15.3: Binary search program . 131
Figure 16.1: Layout of a zero-based 6x4 matrix 133
Figure 16.2: Layout of a one-based 5x3 matrix 134
Figure 16.3: main, load_data, and get_item_number 134
Figure 16.4: get_price subroutine . 135
Figure 16.5: get_quantity subroutine . 136
Figure 16.6: run_menu subroutine . 137
Figure 16.7: print_report subroutine . 138
Figure 16.8: print_product_name subroutine 139
Figure 16.9: Logical Array of Records program (1 of 2) 141
Figure 16.10: Logical Array of Records program (2 of 2) 142
Figure 17.1: Example Using User-defined Functions 145
Figure 17.2: User-defined Functions Program Output 146
Figure 18.1: Singly Linked List . 149
Figure 18.2: Pointer variables contain address that can be changed.

Scalar variables are aliases for constant addresses. 151
Figure 18.3: Free List . 151
Figure 18.4: Singly linked list in a matrix 153
Figure 18.5: dump_raw_storage procedure 154
Figure 18.6: print_nodes procedure . 156
Figure 18.7: initialize_storage function 157
Figure 18.8: load_storage function . 158
Figure 18.9: BASIC code for load_storage 158
Figure 18.10: find_node function . 159

List of Figures vii

Figure 18.11: update_qty function . 160
Figure 18.12: update_price function . 161
Figure 18.13: Finding the last node in the linked list 163
Figure 18.14: Allocating a node from the free list 164
Figure 18.15: Appending the node with identifier 9 to the linked list 164
Figure 18.16: append_node function . 166
Figure 18.17: Finding and removing node with identifier 0 from linked list . 169
Figure 18.18: Prepend deleted node to free list 170
Figure 18.19: Linked list and free list after delete 170
Figure 18.20: delete_node function . 171
Figure 18.21: BASIC code for singly linked lists (1 of 5) 173
Figure 18.22: BASIC code for singly linked lists (2 of 5) 174
Figure 18.23: BASIC code for singly linked lists (3 of 5) 175
Figure 18.24: BASIC code for singly linked lists (4 of 5) 176
Figure 18.25: BASIC code for singly linked lists (5 of 5) 177
Figure A.1: Sample bas55 session . 183
Figure E.1: Algorithm flowchart for

converting °C to °F . 206
Figure E.2: Minimal BASIC program

for converting °C to °F . 206
Figure E.3: If flowchart . 207
Figure E.4: If flowchart for Minimal BASIC 207
Figure E.5: EX01.BAS . 207
Figure E.6: EX01.BAS runtime output . 207
Figure E.7: If with Else flowchart . 208
Figure E.8: If with Else flowchart for Minimal BASIC 208
Figure E.9: EX02.BAS . 208
Figure E.10: EX02.BAS runtime output . 209
Figure E.11: Five-way branch flowchart . 210
Figure E.12: EX03.BAS . 210
Figure E.13: EX03.BAS runtime output . 210
Figure E.14: While Loop . 211
Figure E.15: While Loop for Minimal BASIC 211
Figure E.16: EX04.BAS . 211
Figure E.17: EX04.BAS runtime output . 212
Figure E.18: Do .. While loop . 213
Figure E.19: EX05.bas . 213
Figure E.20: EX05.BAS runtime output . 213
Figure E.21: Repeat .. Until Loop 214
Figure E.22: Repeat .. Until Loop for Minimal BASIC 214
Figure E.23: EX06.BAS . 214
Figure E.24: EX06.BAS runtime output . 214

viii List of Figures

Figure E.25: Ascending Arithmetic For Loop 215
Figure E.26: EX07.BAS . 215
Figure E.27: EX07.BAS runtime output . 215
Figure E.28: Descending Arithmetic For Loop 216
Figure E.29: EX08.BAS . 216
Figure E.30: EX08.BAS runtime output . 216
Figure E.31: Subroutine . 217
Figure E.32: Subroutine Call . 217
Figure E.33: EX09.BAS . 217
Figure E.34: EX09.BAS runtime output . 217

List of Tables
Page

Table 5.1: Runtime Trace for Flowchart 4 26
Table 6.1: Factorial Runtime Trace With Input 5 41
Table 9.1: Column Skip Table . 72
Table 15.1: How many iterations are required for a large binary search? . . . 128
Table 15.2: O (n) table . 128
Table 18.1: Singly linked list demo subroutine locations 172
Table E.1: Flowchart Symbols . 205

ix

Preface

This book is intended as a traditional introduction to programming using the
original Dartmouth style of BASIC. In true old school style, it features algorithm
development using simple flowcharts. While the combination of BASIC and
flowcharts has fallen out of fashion, it is a proven method for teaching programming
to both hobbyists and academic students. Admittedly it does require you to have
a reasonable attention span, a good store of patience, and perseverance. These are
the same attributes that are required to learn programming in any language.

The decline of the popularity of the BASIC language with hobbyists was accelerated
by the decision by Microsoft® to cease bundling a free copy of BASIC with their
operating systems. Another factor was the amazing Turbo Pascal® from Anders
Hejlsberg1 which was very fast, produced true executables, and included an IDE.
It was also very cheap compared to other compilers, and many people switched
from BASIC interpreters to compiled Pascal.

For educational use, the decline had a different cause. So many BASIC programs
were written without obvious structure that the term spaghetti BASIC was coined to
describe the especially bad style of BASIC code that used too many GOTO statements.
The proliferation of BASIC programs written using awful style, and the difficulty of
breaking the bad habits of that style of programming in students when they went
on to learn other programming languages, led to Edsger W. Dijkstra’s intensely
bitter criticism of the language. As an acknowledged giant of computer science and
a genuine Turing award winner, when Dijkstra said “It is practically impossible to
teach good programming to students that have had a prior exposure to BASIC: as
potential programmers they are mentally mutilated beyond hope of regeneration.”2,
it carried incredible weight in the computer science field. His strong criticism
helped eliminate the use of BASIC as a teaching language for academia.3 Niklaus
Wirth’s Pascal language rigidly enforced what were considered better programming
practices, and many schools used it as a replacement for BASIC in their teaching.

1Mr. Hejlsberg also designed Delphi and C#.
2“How do we tell truths that might hurt?” (EWD498), June 18, 1975, privately circulated.
3People tend to forget that in that same paper he also attacked FORTRAN, COBOL, the

software engineering discipline, and even IBM mainframes. All of those technologies are still in
use today, 40 years later.

xi

xii Preface

For business, the decline of BASIC was at least partially due to the inability of
ANSI to define and publish a reasonable standard. The Minimal BASIC standard
did not include support for files, string operations, or arrays of strings and thus
was too weak to be practical for business use. The Full BASIC standard was
wildly ambitious, requiring among other things support for decimal math. It had
far too many features to reasonably implement or even fit in the memory of the
microcomputers of the time. To my knowledge, no complete implementation of
Full BASIC was ever created for a personal computer before the standard was
withdrawn. For business, Minimal BASIC was not enough, Full BASIC was too
much, and so the language splintered into hundreds of not quite compatible dialects.
This, combined with the tendency of BASIC programmers to write undocumented
programs using spaghetti code, caused maintenance nightmares for businesses. They
reacted by abandoning traditional BASIC altogether. While BASIC for business
lives on in name with Visual BASIC® and TrueBASIC®, these are essentially
Pascal derivatives and not really BASIC at all.

So if Minimal BASIC is too weak for business, why have I written both a compiler
for the language and a book about it? BASIC was initially designed for teaching
programming to non-technical people and worked well for that. Minimal BASIC is
the simplest form of the language that was ever standardized, and provides enough
features to solve many mathematical problems. Using a simple language with a
small number of keywords and a small number of features reduces the amount of
syntax and semantics you must memorize, and lets you spend more time actually
programming instead. This BASIC dialect allows you to learn the essential concepts
of procedural, iterative programming without getting lost in the advanced features
of a modern, full-sized programming language. In short, using Minimal BASIC will
keep things simple while still allowing you to program. I sincerely hope that after
you master ECMA-55 Minimal BASIC, you will be motivated to continue your
study by learning a more advanced programming language and the corresponding
more advanced techniques such a language enables you to use. The vast majority of
the problem solving skills you learn from this book will be valid for any mainstream
programming language.

Much of the ugly style of early BASIC programs was a result of trying to get real
programs to fit into the tiny amount of memory available to the interpreters at
the time. Most early machines had far less than 64 kilobytes available for the
interpreter, the loaded program, and the data the program used. Students tend
to emulate code they know works, and much of the available working, non-trivial
BASIC code was undocumented, re-used variables to save memory, used subroutines
with multiple entry and exit points, and would be considered awful code today. For
instance, in a constrained memory environment, comments were considered a waste
of precious bytes. At the time it was written, the code that is considered to have
truly awful style today was highly revered since it allowed packing more features

Preface xiii

into less memory. While BASIC permits such code, it certainly does not require
it. Even today, memory-saving tricks and clever control flow are considered to be
essential for high-quality assembly code, but abominable for high-level code. BASIC
programs do not have to be undocumented or inherently unstructured. With the
large memory available in today’s machines it is possible to write maintainable,
structured BASIC programs with a current implementation of the classic language.
This book aims to teach you step-by-step how to write maintainable programs in
traditional BASIC without resorting to ugly style. The need for proper comments is
stressed, and all of the complex example programs include appropriate comments.

The recommended way to use this text is to work through the chapters sequentially.
In each chapter, when you read about a program, study the flowcharts, and then
type in the example program and run it. Requiring you to actually type in the
programs will build the typing and editing skills that are essential for you to achieve
any real productivity in programming. It also forces you to actually read every
line of code in the program. Once you have read the text, studied the flowchart,
typed in a program, and established the one-to-one correspondence between the
program and the corresponding flowchart, you should be able to understand both
the algorithm and the ECMA-55 Minimal BASIC syntax required to implement
that algorithm. It is expected that you may have to read chapters multiple times
and experiment a bit. Exercises are provided at the end of each chapter to help
reinforce the concepts from the chapter.

Two supported implementations of the ECMA-55 Minimal BASIC language exist
today. Most students will choose Jorge Giner Cordero’s excellent bas55 interpreter
since it is easy to use and runs on the popular Microsoft® Windows® platform as
well as on most POSIX® systems. The bas55 software is described in appendix A.
For users with AMD64®-compatible systems running modern Linux®, I of course
recommend my own ecma55 compiler, which is described in appendix B. All
examples in the book will work with either implementation. Two helpful quick
reference guides are also provided. Appendix C is a guide to the keywords of
the ECMA-55 Minimal BASIC language. Appendix D is a guide to the built-in
functions of the ECMA-55 Minimal BASIC language.

Chapter 1

Introduction

Learning to program is easy using the ECMA-55 Minimal BASIC language. This
dialect of BASIC is very similar to the original BASIC created by John George
Kemeny and Thomas Eugene Kurtz at Dartmouth College in 1964. This was the
first successful computer language invented for teaching, and it was created to
allow absolute beginners who had no programming background at all to write and
run their own computer programs.

In this manual, BASIC refers to the ECMA-55 Minimal BASIC standard dialect
of BASIC. The first thing to know is that this language is line-based, with one
statement on each line. A statement is an instruction to tell the computer to do
something. In BASIC, each line must start with a unique unsigned integer value
between 1 and 9999 called the line number . These numbers specify the order of
the statements and give each statement a unique identifier. Here is a sample of a
small program:

Program Source Code

10 REM DISPLAY ODD NUMBERS FROM 1 TO 9
20 LET I=1
30 PRINT I
40 LET I=I+2
50 IF I<=9 THEN 30
60 END

Here you will see there are six lines, each beginning with a line number, and the
lines are displayed in ascending order by line number. When the program runs,
it will start on the lowest numbered line. Unlike some other computer languages,
tabs are not permitted in the source code, and each item on the line is separated
by at least one space. The last line of the program must be an END statement, and
no other line can have an END statement. Notice that each line has a statement
that begins with a keyword after the initial line number. For example, the keyword
on lines 20 and 40 is LET. Line 10 has the keyword REM which is used to enter a
remark, or comment that does not do anything but is for the programmers to read.
It is a way to put notes, or hints about how the program works, into the source

1

2 Chapter 1 Introduction

code of the program. BASIC requires that the ASCII1 character set be used.2 Lines
can be up to 72 columns wide including the line number. Lower-case alphabetic
characters are not permitted.

Now that you have seen a simple example program, the first question that should
come to your mind is “What does the program tell the computer to do?” The best
way to explain it is with a picture as shown in figure 1.1.

Start

I ← 1

Output value of I

I ← I + 2

I ≤ 9

Stop

True

False

Figure 1.1: Sample Flowchart

The picture is called a flowchart and the ar-
rows indicate the direction of the flow of logic.
Flowcharts are independent of the programming
language being used and represent the essence,
or idea, of the program, which is known as an
algorithm. This flowchart3 shows many of the
symbols that will be used in this document.
The rectangle is used for assignment, which
changes the value of variable. The parallelo-
gram is used for statements that perform data
input or output. The diamond is used for state-
ments that have a condition that can change
what the program will do. A special terminal
symbol exists that looks like a rectangle that
had 1

2 circles glued on the left and right sides
and it is used for the start of the program and
the end of the program. This flowchart lets you
see instantly that there is a loop in the program
since if the condition in the diamond is true,

the program will go back to an earlier place in the program and then continue
going until it reaches the condition again. When using the flowchart, you start on
the Start symbol and when you get to the terminal symbol with the word Stop,
you quit running the algorithm. While there can only be one terminal symbol with
the word Start, there can be multiple terminal symbols with the word Stop.

The second question that should have leapt into your mind when you first saw the
example program was “What will it output?”. There is a comment on line 10 that

1American Standard Code for Information Interchange
2Actually, the standard specifies the ECMA-6 7-Bit Coded Character Set. This was an

ECMA-ratified version of ISO/IEC 646. The modern version of the international standard is ISO
646:1991, also known as ITU T.50. The ISO 646:1991 IRV (International Reference Version) is
identical to ASCII. Thus current implementations of ECMA-55 Minimal BASIC uses (part of)
the ASCII character set since ECMA-6 is a subset of ASCII. BASIC needs the IRV version for
the DOLLAR SIGN at 2/4 and the CIRCUMFLEX ACCENT at 5/14.

3The flowcharts in this manual comply with the program flow charts specified in the
“STANDARD ECMA-4 FLOW CHARTS, 2nd Edition, September 1966” document.

Chapter 1 Introduction 3

says this will output odd numbers between 1 and 9, but will it really? Here is the
output from that program:

Program Output

1
3
5
7
9

As you can see in the program output, the program generates the odd numbers
between 1 and 9, printing each of those odd numbers on its own separate line, so
the comment is correct. So how is the BASIC program really an implementation
of the algorithm specified by the flowchart? In BASIC, comments use the REM
keyword which is short for remark. Everything after the REM is ignored, as long as
no lower-case alphabetic characters are used. The comments, or REMarks specified
by the REM statement are not included in flowcharts, since they do not actually make
the program do anything. The rectangles in the flowchart represent LET statements
which are used to assign values to variables. The values may be constants or the
results of expressions. The parallelogram is used for the PRINT statement which
displays information. The diamond corresponds to the IF statement which is
used to do a conditional branch. The Stop picture is how the END statement is
drawn. The Start picture does not have a special statement in BASIC, but instead
corresponds to the first non-REM statement in the program.

Chapter 2

HELLO, WORLD!

Now it is time to begin programming. Traditionally, a “Hello, World!” program
is the first program a student writes. The required logic is very simple, but even
a simple program has a corresponding flowchart. The flowchart for the “HELLO,
WORLD” program is shown in figure 2.1.

Start

Output message “HELLO, WORLD!”

Stop

Figure 2.1: Hello World Flowchart

This resulting program is called a straight-line program because the execution flow
through the flowchart is in a straight line from the start symbol to the stop symbol
and there are no branches. A branch occurs when after a statement is executed
the program continues running at some location besides the line of the program
immediately following that statement. In the introduction you already learned
every program must have an END statement as the last line, and when you want to
display something on the screen we use the PRINT statement. The source code for
the program implementing the algorithm in flowchart 2.1 in the ECMA-55 Minimal
BASIC dialect is shown in figure 2.2.

10 PRINT "HELLO, WORLD!"
20 END

Figure 2.2: Hello World Program

What does line 10 do? The PRINT statement will send the message HELLO, WORLD!
to your screen. Then the program will advance to the next line, line 20. Line 20 is
the special END statement which marks the end of the program, so the program
will terminate. The output of the program when you run it is shown in figure 2.3.

5

6 Chapter 2 HELLO, WORLD!

HELLO, WORLD!

Figure 2.3: Hello World Program Output

Line numbers are traditionally entered starting with 10, not 1, and in increments
of 10 instead of increments of 1. This is to allow adding more lines later to modify
the program. This leaves room for 9 lines before the first line, and room for 9 lines
between any other two lines in the program.

Chapter 2 HELLO, WORLD! 7

Exercises

1. Create a flowchart for an algorithm that displays the message “I CAN
PROGRAM!”

2. Write the ECMA-55 Minimal BASIC program for the flowchart in the
previous question.

Chapter 3

Temperature Conversion

The easiest problems that can be solved with Minimal BASIC are math problems
that are based on a formula. Conversions of various units of measurements are
typical examples of problems that can be solved by using a simple formula. This
chapter will work through two examples of temperature conversion to show you
step-by-step how to work from a formula to a flowchart and finally to a working
Minimal BASIC program.

3.1 Convert Celsius to Fahrenheit

When you travel, you may want to be able to convert the temperature in Celsius
to the temperature in Fahrenheit. The formula for this is well known, and is shown
in equation 3.1.

°F = 32 + 9
5°C (3.1)

The next step after you have the formula is to create a flowchart that uses that
formula. The flowchart will describe the logic we need, called the algorithm. The
algorithm does not specify what computer language will be used, only what the
program must do, step-by-step. A suitable flowchart is shown in figure 3.1.
To get the value of the temperature in Celsius from the user we need to use the
INPUT statement which gets information from the keyboard. The INPUT keyword
is followed by a comma-delimited1 list of one or more variable names. Since our
formula and flowchart both use C and F , it makes sense to use those as the variable
names in our program. You need to get the value of C from the user, and you can
do that by using INPUT C. In any flowchart the INPUT statement, like the PRINT
statement, is always shown as a parallelogram.
A BASIC program that implements flowchart 3.1 to convert a Celsius value typed
in by the user to a Fahrenheit value using formula 3.1 is shown in figure 3.2.
Once you have typed in the program, it is time to try running it. First try converting
0°C to Fahrenheit. We know it should be 32, since this is the temperature at which
water normally freezes. You can see the output of the program in figure 3.3.

1A delimiter is something that separates items in a list. So comma-delimited items are a list
of items with commas separating them.

9

10 Chapter 3 Temperature Conversion

Start

Output message
“ENTER TEMPERATURE IN CELSIUS”

Input numeric value
into variable C

°F ← 32 + 9
5°C

Output message
“TEMPERATURE IN FAHRENHEIT IS”

followed by value of variable F

Stop

Figure 3.1: Flowchart for Converting °C to °F

10 PRINT "ENTER TEMPERATURE IN CELSIUS";
20 INPUT C
30 LET F=32+(9*C)/5
40 PRINT "TEMPERATURE IN FAHRENHEIT IS";F
50 END

Figure 3.2: Program Celsius to Fahrenheit

ENTER TEMPERATURE IN CELSIUS? 0
TEMPERATURE IN FAHRENHEIT IS 32

Figure 3.3: Program Celsius to Fahrenheit Output for 0°C

On a really beastly hot day in Bangkok, Thailand, the temperature might be as
high as 43°C which should be just over 109°F. When we run the program with that
input you will see in figure 3.4 that indeed the program works and gets the correct
answer.

ENTER TEMPERATURE IN CELSIUS? 43
TEMPERATURE IN FAHRENHEIT IS 109.4

Figure 3.4: Program Celsius to Fahrenheit Output for 43°C

Now you have successfully written programs that can use a formula for calculation.
Amazingly, well into the 1960’s almost everyone wanting to do those conversions had

3.2 Convert Fahrenheit to Celsius 11

to use a pencil and paper and do it by hand. Today almost all mobile telephones
have a calculator that can do it. In this chapter you have learned a lot already.
Here is a list you can use to help you review what you have learned. The list shows
what you know about the flowchart symbols in figure 3.5 for the following kinds of
actions:

• Beginning a program
The program will always begin on the lowest numbered line of the program.
This uses the terminal symbol.

• Displaying output on the screen
This requires using the PRINT statement. This uses the input/output symbol.

• Getting input from the keyboard
This requires using the INPUT statement. This uses the input/output symbol.

• Assigning a value to a variable
The value can be a literal value or the result of an arithmetic expression.
This requires using the LET statement. This uses the rectangle symbol.

• Ending a program
This requires using the END statement. This uses the terminal symbol.

terminal
symbol

process
symbol

input/output
symbol

Figure 3.5: Flowchart Symbols

3.2 Convert Fahrenheit to Celsius

It’s time for you to try another conversion program, but this time you will write
a program to convert from Fahrenheit to Celsius. The correct formula for that is
given in equation 3.2.

°C = 5
9(°F − 32) (3.2)

Once you have the formula and think about it a while, you will realize the flowchart
will look almost the same as the one for converting from C to F. A flowchart to
convert from Fahrenheit to Celsius is shown in figure 3.6 on page 12.

Since the flowchart shown in figure 3.6 is very similar to the previous program’s
flowchart shown in figure 3.1 on page 10, it is obvious that the program for this
flowchart will be similar to the previous program. Figure 3.7 on page 12 shows a
BASIC program that uses the algorithm specified by the flowchart to convert a
Fahrenheit value typed in by the user to a Celsius value using equation 3.2.

12 Chapter 3 Temperature Conversion

Start

Output message
“ENTER TEMPERATURE IN FAHRENHEIT”

Input numeric value
into variable F

°C ← 5
9(°F − 32)

Output message
“TEMPERATURE IN CELSIUS IS”

followed by value of variable C

Stop

Figure 3.6: Flowchart for Converting °F to °C

10 PRINT "ENTER TEMPERATURE IN FAHRENHEIT";
20 INPUT F
30 LET C=(5*(F-32))/9
40 PRINT "TEMPERATURE IN CELSIUS IS";C
50 END

Figure 3.7: Program Fahrenheit to Celsius

ENTER TEMPERATURE IN FAHRENHEIT? 0
TEMPERATURE IN CELSIUS IS-17.7778

Figure 3.8: Program Fahrenheit to Celsius Output for 0°F

ENTER TEMPERATURE IN FAHRENHEIT? 43
TEMPERATURE IN CELSIUS IS 6.11111

Figure 3.9: Program Fahrenheit to Celsius Output for 43°F

3.2 Convert Fahrenheit to Celsius 13

Well, the good news is that the conversion is correct. The bad news is that as you
can see in figure 3.8 on page 12, there is no space between the S and the minus
sign. What happens for answers that are positive?

As you can see in figure 3.9 on page 12, positive values work without a problem.
The error in our program only occurs if the answer is negative. We will learn the
necessary techniques to handle this case in later chapters. Some programmers will
call an error a bug, and that is the basis of the words debug (remove a bug) and
debugger (a tool to help find bugs so you can remove them).

Note that the actual output for floating point values may be different in your
implementation of ECMA-55 Minimal BASIC than the values shown here. The
ECMA-55 standard allows the implementation to determine some of the floating
point details. For instance, the number of digits after the period in 1/3 may differ
between implementations, but will be something like 3.33334E-1 or .3333334, but
the number of ‘3’ digits after the period and whether or not to use scientific notation
will depend on the implementation. This issue is not unique to ECMA-55 Minimal
BASIC. For instance, even programs written in the famous C computer language
can have math results that differ for the same program depending on the compiler
and the platform used.

14 Chapter 3 Temperature Conversion

Exercises

1. Create a flowchart for an algorithm that converts from inches to centimeters.
One inch is equal to 2.54 centimeters.

2. Write the ECMA-55 Minimal BASIC program for the flowchart in the
previous question.

3. Create a flowchart for an algorithm that converts an angle in degrees to an
angle in radians. 360° is equal to 2π radians.

4. Write the ECMA-55 Minimal BASIC program for the flowchart in the
previous question.

Chapter 4

Scalar Variables and Constants

In chapter 3 programs were written that used variables. What are variables? A
variable is a name for a region of memory in your program’s address space. In
simple terms, it’s a memory address. Your program runs in a process. That process
uses memory, and in most machines today that is RAM (Random Access Memory).
Memory is organized into words, and those words are divided into bytes, and bytes
are collections of 8 bits, and a bit is a single part of memory that can be 0 or 1.
Once upon a time, long long ago, programs were written directly in machine code
without using variable names and instead the numeric addresses were used. That
is hard for humans to remember, and made reading programs very difficult. Today
instead of having to remember the address of every place in memory where we will
store data, we use variable names, normally just called variables.

Start of
Address Space

End of
Address Space

8184

8192C

8200F

8208

Figure 4.1: Scalar Variables are Addresses

For example, in the program shown in figure 3.7 on page 12, two scalar numeric
variables are used: C and F . Conceptually, these are in memory as shown in
figure 4.1. The variable C is actually stored at address 8192, and the variable F

15

16 Chapter 4 Scalar Variables and Constants

is after that at address 8200.1 Each scalar will store a number, and in Minimal
BASIC on a 64 bit machine, each number is a floating point value and typically
uses 8 bytes. In languages like C and C++, the data type used is called a double.

The good news for you is that when you program in BASIC, you do not need to
think about how many bytes or what the addresses are where the data is stored. All
you need to do is use variables and the computer will automatically find memory
and track the address where each variable will be stored. In ECMA-55 Minimal
BASIC, you get 26 scalar numeric variables with names from A to Z, and then you
get 260 more with names from A0 to Z0, A1 to Z1,. . . ,A9 to Z9. What do I mean
by a scalar variable? A scalar variable is a variable that can hold just one unit of
data. In ECMA-55 Minimal BASIC, numeric data is always stored as doubles, so
a numeric scalar variable in BASIC can hold one double type number. A double
is a floating point number, which is a computer approximation of a real number.
You already know what a real number is, and that some of them such as π and e
have an infinite number of digits. A computer cannot store every real real number
perfectly because storage is limited and it would not be efficient to do math with
unbounded-sized numeric representations. Floating point numbers approximate
real numbers, but because the storage for each number is limited, and thus the
precision is limited, the computer cannot natively store all real numbers. To do
that, we would need infinite room, since the number of real numbers, even between
any two real numbers, is infinite.

The IEEE7542 standard supports a double type which all known modern imple-
mentations of ECMA-55 Minimal BASIC use for numeric data. This is a floating
point type for numbers with about 15 decimal digits in the mantissa, and 3 decimal
digits in the exponent, although the number is actually stored in a binary (base-2)
format. If you try to use numbers with more than 15 decimal digits of mantissa,
the excess precision will be truncated to make the number fit within the allocated
bytes of storage. On a 64 bit machine with a 64 bit implementation of ECMA-55
Minimal BASIC, 8 bytes of storage will be allocated. If you use numbers with
too large an exponent, an overflow error will occur. The range of the positive
floating point numbers for AMD64 machines is approximately from 2.2× 10−308 to
1.79× 10308, and the range of the negative floating point numbers is approximately
from −1.79× 10308 to −2.2× 10−308.

Sometimes you want to store letters instead of numbers. A stream of characters is
called a string, and is enclosed in double quotes when you type a literal value. In
BASIC, a string scalar variable has a trailing dollar sign and there are 26 variables

1The actual addresses and bit patterns used to store values depend on the platform, but those
details are taken care of automatically for the programmer by their ECMA-55 Minimal BASIC
implementation.

2IEEE 754-1985 as it is implemented in Intel64® and AMD64® 64 bit processors.

Chapter 4 Scalar Variables and Constants 17

you can use, A$ through Z$. In ECMA-55 Minimal BASIC a string can only
contain a maximum of 18 characters, and they must be 7 bit ASCII characters.
Lower-case characters are not permitted.3 A string scalar variable, like a numeric
scalar variable, is really just an alias for the address of the location in memory
where the string is stored.

A data type, sometimes shortened to just type, is a term that means the kind of
information that can be stored in a variable. ECMA-55 Minimal BASIC has just
two scalar types: numeric and string. If a variable name has a trailing dollar
sign then the type is string, otherwise it is numeric. You must put a value into
a variable, usually with a LET statement, before you try to use the variable in
any expression. Unlike many modern languages, you do not need to declare scalar
variable names or their types with ECMA-55 Minimal BASIC. The variable name
itself specifies the type, and storage for variables is allocated automatically by the
BASIC software when you use them in your program. Since the variable names are
so short, for any long program you should include some comments using the REM
statement to describe the purpose of each variable.

10 REM TEMPERATURE CONVERSION FROM F TO C
20 REM F IS THE TEMPERATURE IN FAHRENHEIT THE USER WILL SUPPLY
30 REM C IS THE TEMPERATURE IN CELSIUS THE PROGRAM WILL COMPUTE
40 REM
50 PRINT "ENTER TEMPERATURE IN FAHRENHEIT";
60 INPUT F
70 LET C=(5*(F-32))/9
80 PRINT "TEMPERATURE IN CELSIUS IS";C
90 END

Figure 4.2: Program Fahrenheit to Celsius with Comments

In the sample program shown in figure 4.2 a comment using a REM statement is
used to describe what the program does on line 10. Then on lines 20 and 30
comments exist that describe the purpose of the variables F and C. Line 70 is
the formula, and uses three literal values, the values 5, 32, and 9. Line 70 will
compute the expression, which is everything after the equals sign, and then store
the resulting value in the variable name specified before the equals sign. This is
called assignment of a value to a variable, and the LET statement is used for that.
Line 60 also assigns a value to a variable, but it gets the value from the keyboard
because it is an INPUT statement.

So why are these names of places to store data called variables? That name comes
from mathematics, where a variable is the name of a numeric value that can vary,

3ECMA-116 Full BASIC has better string support that allows more characters, substring
addressing, concatenation, and many other things, but ECMA-55 Minimal BASIC is designed for
math problems and lacks the advanced string features.

18 Chapter 4 Scalar Variables and Constants

or change, over time or with different conditions. A value that cannot vary is called
a constant. In programming with BASIC, a constant is often called a literal value,
sometimes shortened to just a literal.

To review, there are four types of data ECMA-55 Minimal BASIC can use that
have been discussed in this chapter:

1. "HELLO" is a string literal, or a scalar string constant.
2. 99 is a numeric literal, or a scalar numeric constant. Many different formats

of numeric constants exist, and some examples will let you know what to
expect:

• 3.1415926 (π)
• 314.15926E-02 (π)
• -.31415926E+01 (−π)
• 2.7182818 (e)

3. A$ is a string scalar variable.
4. A and Z4 are numeric variables.

Chapter 4 Scalar Variables and Constants 19

Exercises

1. Describe the difference between a numeric scalar variable and a numeric
constant in ECMA-55 Minimal BASIC.

2. Describe the difference between a string scalar variable and a string constant
in ECMA-55 Minimal BASIC.

3. Describe the difference between a numeric scalar variable and a string scalar
variable in ECMA-55 Minimal BASIC.

Chapter 5

Generating Sequences

This chapter contains several examples of programs that generate sequences of
numbers. We will begin with a straight-line program, and then gradually improve it.
As part of writing the improvements, we will learn about more BASIC statements.
But first, you need to understand sequences. Actually, you probably already know
about them, but this quick review will help you if you forgot everything. The
simplest sequence most people know is the sequence of counting numbers that goes
like this:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

The trailing . . . indicates that the sequence goes on forever. Probably you do not
want to run your program forever, so the number of terms to be printed in a
sequence must be limited. There are two common ways to limit the number of
terms printed in sequences:

• Stop after a specified number of terms have been printed.
For example, if we want five terms of the counting number sequence, we
would get 1,2,3,4,5 and then stop.

• Stop after a specified threshold value has been reached.
For example, if we want to stop when we exceed the value 7, we would get
1,2,3,4,5,6,7 and then stop.

Now it is time to specify exactly what we want, create the flowchart, then write
the program and finally run it. For this first program, we will stop after we print
five terms of the counting numbers sequence.

You can see the shape of the flowchart in figure 5.1 on page 22 is exactly the
same as the flowchart for the program that printed “HELLO, WORLD!”. The only
difference is the message printed this time is “1,2,3,4,5”. The corresponding BASIC
program is shown in figure 5.2 on page 22. When the program in figure 5.2 is run,
the output of the program is correct, as shown in figure 5.3 on page 22.

In this program I included lines 10 and 20 with some comments using the REM
statement. Those lines describe what the program is doing. It is a good idea to

21

22 Chapter 5 Generating Sequences

Start

Output message “1,2,3,4,5”

Stop

Figure 5.1: Flowchart 1

10 REM PROGRAM TO PRINT FIRST FIVE VALUES IN THE
20 REM COUNTING NUMBER SEQUENCE
30 PRINT "1,2,3,4,5"
40 END

Figure 5.2: Program 1

1,2,3,4,5

Figure 5.3: Program 1 output

include the comments because in a week or two you may forget what the program
was doing. If you have no comments, it can take a while to learn what a program
is trying to do. Comments are not included in a flowchart, only in the source of a
program.

Well, that program was easy and works, but what happens if we want to ask the
user for the number of terms and then print those terms? Well, we know we can
get the number of terms using the INPUT statement. If we are on a term T , we can
use formula shown in equation 5.1 to get the next term:

T = T + 1 (5.1)

But how can we know when to stop? How can we avoid typing that formula many,
many times? We will need to learn some new BASIC statements to make it possible
to write that program. But first, we need to create a flowchart! In the introduction
the diamond symbol was used to allow checking a condition and then going one
way if the condition was true and another way if the condition was false. When the
program flow goes to different parts of the program depending on a condition this
is called a conditional branch. That is part of what we need to solve this problem.
We will need two variables. One will count how many terms we have printed, and
the other will hold the value of the current term to print. Study the flowchart
shown in figure 5.4 on page 23.

Chapter 5 Generating Sequences 23

Start

Input value of N

I ← 1

Output value of I

I ← I + 1

I ≤ N

Stop

True

False

Figure 5.4: Flowchart 2

At first glance the flowchart looks like it will be fine, and for the sequence we are
printing it will work. However, what if we want a sequence like the positive even
numbers? That sequence is:

2, 4, 6, 8, 10, . . .

Changing the formula for computing I and the starting point are the first steps,
which result in the flowchart show in figure 5.5 on page 24. If we run that flowchart
by hand, however, and enter 5, we only get this sequence:

2, 4

Running a flowchart is pretty easy. You need to create some place to record
the values of the variables and then update them when they are updated in the
flowchart. You need to keep track of your position in the flowchart as you run
the algorithm. For the flowchart in figure 5.5 on page 24, we need two variable
locations, one for the variable I and another for the variable N . Let’s run the
flowchart step-by-step. We begin at the start symbol. The we enter a 5 when
prompted so the value of N becomes 5. The variable I is assigned the value of 2.
Then we print the 2. Next we increment the variable I by 2 and the value of I
becomes 4. We now check whether the value of I, now 4, is less than or equal to
the value of N , now 5. The answer is true, so we go back and print the new value
of I which is 4. Next we increment I by 2 and the value of I becomes 6. We now
check whether the value of I, now 6, is less than or equal to the value of N, now 5.

24 Chapter 5 Generating Sequences

Start

Input value of N

I ← 2

Output value of I

I ← I + 2

I ≤ N

Stop

True

False

Figure 5.5: Flowchart 3

The answer is false, so the program continues to the end symbol and execution of
the algorithm ends after printing only two terms of the series instead of five terms
like we wanted.

This bug occurs because we really need to have separate variables for the count
and the next sequence value. If C is used for the count variable, and a different
variable I is used for the current term variable, the problem can be solved. A
corrected flowchart with those changes is shown in figure 5.6 on page 25.

5.1 Loops

Notice that in the flowcharts shown in figure 5.5 on page 24 and figure 5.6 on
page 25 the arrows can go in a circle if the condition in the diamond is true. That
circle, or cycle, is called a loop, and loops are one of the fundamental building
blocks of algorithms. When you are executing an algorithm with a flowchart, or
when you are running a real program, each time you go into the loop is called an
iteration of the loop. In the examples so far in this chapter, the test to determine
whether to do another loop iteration is always at the end of the loop. This type of
looping structure is called a post-test loop. In a post-test loop, the test to determine
whether to execute the loop body or exit the loop occurs at the end of the loop,
after the loop body.

What happens when you run the corrected flowchart? Well, first you need to have
memory locations for the three variables N , I, and C. Then you must determine

5.1 Loops 25

Start

Input value of N

I ← 2
C ← 1

Output value of I

I ← I + 2
C ← C + 1

C ≤ N

Stop

True

False

Figure 5.6: Flowchart 4

what the user’s input will be. In this case, the input will be 5. Running the
algorithm with that value as input produces a table similar to table 5.1 which
begins on page 25. It shows the changes of the variables while the algorithm runs.

Iteration C I N Comments

? ? ? At the start all values are undefined
? ? 5 N ← 5 from user input
? 2 5 I ← 2
1 2 5 C ← 1

1 1 2 5 display value of I which is 2
1 1 4 5 I ← I + 2
1 2 4 5 C ← C + 1
1 2 4 5 loop again because the value of C, which is 2, is

less than or equal to the value of N, which is 5
2 2 4 5 display value of I which is 4
2 2 6 5 I ← I + 2

Continued on next page

26 Chapter 5 Generating Sequences

Iteration C I N Comments
Continued from previous page

2 3 6 5 C ← C + 1
2 3 6 5 loop again because the value of C, which is 3, is

less than or equal to the value of N, which is 5
3 3 6 5 display value of I which is 6
3 3 8 5 I ← I + 2
3 4 8 5 C ← C + 1
3 4 8 5 loop again because the value of C, which is 4, is

less than or equal to the value of N, which is 5
4 4 8 5 display value of I which is 8
4 4 10 5 I ← I + 2
4 5 10 5 C ← C + 1
4 5 10 5 loop again because the value of C, which is 5, is

less than or equal to the value of N, which is 5
5 5 10 5 display value of I which is 10
5 5 12 5 I ← I + 2
5 6 12 5 C ← C + 1
5 6 12 5 exit because the value of C, which is 6, is NOT

less than or equal to the value of N, which is 5

Table 5.1: Runtime Trace for Flowchart 4

The flowchart shown in figure 5.6 on page 25, and especially the runtime trace
shown in table 5.1 which begins on page 25 from running that flowchart, make it
clear that we can use the flowchart shown in figure 5.6 on page 25 to generate either
sequence we considered with only a small change. Notice that in the first sequence
I is always incremented by 1, but in the second case I is always incremented by 2.
Otherwise the same flowchart would generate either sequence. What if we wanted
to generate this sequence?

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, . . .

To generate this sequence you would just increment I by 10 instead of 1 or 2. You
also need to have the user enter the first term value. So the increment should
probably be a new variable which will be called D. Making those changes will
result in the flowchart shown in figure 5.7 on page 27.

The flowchart shown in figure 5.7 on page 27 was changed in only two places, one
to have the user input D as well as N , and the other to increment by D instead of

5.1 Loops 27

Start

Input values of N and D and I

C ← 1

Output value of I

I ← I + D
C ← C + 1

C ≤ N

Stop

True

False

Figure 5.7: Flowchart 5

10 REM SEQUENCE GENERATING PROGRAM
20 REM D IS THE DELTA, OR AMOUNT TO ADD TO THE OLD VALUE TO GET THE NEXT
30 REM VALUE IN THE SEQUENCE
40 REM N IS THE NUMBER OF TERMS WE WANT
50 REM I IS THE CURRENT TERM VALUE
60 REM C IS THE COUNTER FOR NUMBER OF TERMS PRINTED
70 PRINT "WHAT VALUES FOR NUMBER OF TERMS,DELTA,FIRST TERM";
80 INPUT N,D,I
90 LET C=1
100 PRINT I
110 LET I=I+D
120 LET C=C+1
130 IF C<=N THEN 100
140 END

Figure 5.8: Program Source Version 1

28 Chapter 5 Generating Sequences

2. So what is the BASIC program for this flowchart? The most direct translation
is shown in figure 5.8 on page 27.

Two things are new in this program. First, the INPUT statement on line 80 now
has a list of variables instead of just one. The user will see a prompt, and then the
user must enter 3 values with commas separating them. This is just an extended
syntax for the INPUT statement you already know about. Line 130 has an IF
statement, which is new for you. The IF statement is a conditional branch. The
text between the IF keyword and the THEN keyword is the condition to check. If it
is false, nothing happens and the program would continue on to the next line, in
this case line 140. If the condition is true, then the program will branch, or jump,
to the line specified after the THEN keyword, which in this case is line 100. This IF
statement directly corresponds to the diamond in the last flowchart. The output
of the program when you run it would be as shown in figure 5.9.

WHAT VALUES FOR NUMBER OF TERMS,DELTA,FIRST TERM? 5,10,10
10
20
30
40
50

Figure 5.9: Program Output

What if the user replies with a value of 0 for N? The program should exit without
emitting any numbers in the sequence, but because the test is after the output,
the program will always show at least one term, which is an error. Several ways
exist to fix this. Perhaps the first one you might think of is to add another test
after the user provides input but before the loop begins.

Your first attempt to fix this bug would probably result in a flowchart that looks
similar to figure 5.10. This algorithm does avoid printing a term if the user specifies
zero terms. However, the algorithm is now more complex since it has two branches.
You know two conditional branches exist because there are two diamonds in the
flowchart. This will mean that the program will be more complex too. The BASIC
program, after updating it to match the flowchart shown in figure 5.10 on page 29,
is shown in figure 5.11 on page 29.

Is it possible to solve the problem with only one branch? In fact it is, and that
solution is better than this one. Sometimes a solution works, but it is not the best
solution. When possible, you will want to take the time to find the best solution
since that solution will be easier to understand and update later.

If we moved the check from the diamond at the bottom so that the check is done
first, and then printing and incrementing the variables occurs if and only if the
check passes, then we would not need two diamonds.

5.1 Loops 29

Start

Input values of N and D and I

N > 0 False

True
C ← 1

Output value of I

I ← I + D
C ← C + 1

C ≤ N
True

False

Stop

Figure 5.10: Flowchart 6

10 REM SEQUENCE GENERATING PROGRAM
20 REM D IS THE DELTA, OR AMOUNT TO ADD TO THE OLD VALUE TO GET THE NEXT
30 REM VALUE IN THE SEQUENCE
40 REM N IS THE NUMBER OF TERMS WE WANT
50 REM I IS THE CURRENT TERM VALUE
60 REM C IS THE COUNTER FOR NUMBER OF TERMS PRINTED
70 PRINT "WHAT VALUES FOR NUMBER OF TERMS,DELTA,FIRST TERM";
80 INPUT N,D,I
90 IF N<1 THEN 150
100 LET C=1
110 PRINT I
120 LET I=I+D
130 LET C=C+1
140 IF C<=N THEN 110
150 END

Figure 5.11: Program Source Version 2

30 Chapter 5 Generating Sequences

Start

Output
“WHAT VALUES FOR NUMBER OF

TERMS,DELTA,FIRST TERM”

Input values of N and D and I

C ← 1

C ≤ N
False

True

Output value of I

I ← I + D
C ← C + 1

Stop

Figure 5.12: Flowchart 7

5.2 FOR Loops 31

In figure 5.12 on page 30, you will see that there is a line that goes in a loop but
it leaves from a rectangle, not a diamond. That means that we must make an
unconditional branch, sometimes called a jump. You will need to use the GOTO
keyword for that. The GOTO keyword is followed by a line number, just like with the
THEN in the IF conditional branch statement. The line number specified after the
GOTO or THEN keyword is called the jump target, and specifies the line number of the
program where the control flow will go if the branch is taken. For GOTO, the branch
is of course always taken. In the program for the flowchart shown in figure 5.12 on
page 30, line 140 uses the GOTO keyword to implement an unconditional branch as
shown in figure 5.13.

10 REM SEQUENCE GENERATING PROGRAM
20 REM D IS THE DELTA, OR AMOUNT TO ADD TO THE OLD VALUE TO GET THE NEXT
30 REM VALUE IN THE SEQUENCE
40 REM N IS THE NUMBER OF TERMS WE WANT
50 REM I IS THE CURRENT TERM VALUE
60 REM C IS THE COUNTER FOR NUMBER OF TERMS PRINTED
70 PRINT "WHAT VALUES FOR NUMBER OF TERMS,DELTA,FIRST TERM";
80 INPUT N,D,I
90 LET C=1
100 IF C>N THEN 150
110 PRINT I
120 LET I=I+D
130 LET C=C+1
140 GOTO 100
150 END

Figure 5.13: Program Source Version 3

5.2 FOR Loops

Loops with the diamond at the top of the loop are called pre-test loops. For pre-test
loops like the one shown in figure 5.12 on page 30, we can do even better. BASIC
has a special pair of statements to support a nicer syntax for pre-test loops that
count by an increment, The start of the loop must declare the variable that will
be used for counting, the start value, and the end value. That special variable
used for counting is known as the loop index variable, often shortened to just loop
index . The default increment is one, but you can change the increment value when
necessary. The statement used at the start of the loop is FOR. Line 140 in the source
program version 3 has the end of the loop on line 140. Immediately before that on
line 130 the loop counter variable C was incremented by one. The statement to
do these two things is the NEXT statement. Every FOR must have a corresponding
NEXT. Learning this seems complicated, but it really is just an easier syntax for
pre-test counting loops.

32 Chapter 5 Generating Sequences

Version 4 of the program is shown in figure 5.14 on page 32. There is no new
flowchart since the algorithm does not change. The FOR statement on line 90
declares the variable C as the loop index variable, initializes it to the value 1, sets
the limit expression to the variable N, and set the increment to be 1. This is the
increment for the C variable that counts the number of times through the loop, not
the increment for the sequence which is the variable D. So the lines 80 and 100 in
version 3 are combined into line 90 in version 4.

The TO separates the initialization of the loop index variable C from the limit of
the loop. The optional STEP clause specifies the increment to use. If no STEP is
specified, then the increment used will be the default increment of 1. The end of
the loop must increment the loop index variable, and then it must branch back to
the test (diamond in the flowchart) at the top of the loop. This combines lines 130
and 140 in version 3 and replaces them by the one line with the NEXT statement on
line 120 in version 4. With version 3, we needed to specify two line numbers, one
for the target of the conditional branch, and one for the target of the unconditional
branch. When using the FOR. . . NEXT looping structure you do not need to do that.
So what happens when the condition to continue the loop is false? The code will
branch to the line immediately following the NEXT statement. In version 4 of the
program, when the loop exits the program will jump to line number 130.

10 REM SEQUENCE GENERATING PROGRAM
20 REM D IS THE DELTA, OR AMOUNT TO ADD TO THE OLD VALUE TO GET THE NEXT
30 REM VALUE IN THE SEQUENCE
40 REM N IS THE NUMBER OF TERMS WE WANT
50 REM I IS THE CURRENT TERM VALUE
60 REM C IS THE COUNTER FOR NUMBER OF TERMS PRINTED
70 PRINT "WHAT VALUES FOR NUMBER OF TERMS,DELTA,FIRST TERM";
80 INPUT N,D,I
90 FOR C=1 TO N STEP 1
100 PRINT I
110 LET I=I+D
120 NEXT C
130 END

Figure 5.14: Program Source Version 4

The output of version 4 is identical to the output shown before in figure 5.9. There
are some more details to remember about FOR loops. Each time the NEXT statement
is reached, the loop index is incremented by a constant value. This value defaults
to one, but you can specify the value you want to increment by with the optional
STEP clause of the FOR statement. You can omit the “STEP 1” on line 90 if you
want to avoid typing so much, since the default increment is already 1. Also, the
NEXT that ends the loop must specify the same index variable as the FOR that
starts the loop. The part of the loop between the FOR and NEXT statement is called
the body of the loop. As you already know by now, describing the exact details of

5.3 Summary 33

the FOR and NEXT statements takes many lines of text, but the idea is easy and
makes writing counting loops, which are in almost every complex algorithm, much
easier to write. You can use a negative value in the STEP clause if you want to
count down instead of count up, but in that case be careful to ensure the limit
you specify is not actually greater than your start value. When the FOR loop exits,
remember that the index variable will not be the last value of the index variable
used. Instead, it will be the value that would have been used in the next iteration
of the loop. That is, it will be the sum of the last loop index variable value used
and the step value. Type in the program shown in figure 5.15 and run it. You will
see the output shown in figure 5.16.

10 FOR X=1 TO 9 STEP 4
20 PRINT X
30 NEXT X
40 PRINT "AFTER LOOP X IS";X
50 END

Figure 5.15: Program Source Version 5

1
5
9

AFTER LOOP X IS 13

Figure 5.16: Output of Version 5 Program

5.3 Summary

Now it is time to summarize the essential ideas learned in this chapter. Sometimes
you want to run a series of statements more than once with some condition deciding
when to stop re-running those statements. When you draw a flowchart that does
this, you will see a cycle, or loop, in the flow. Looping is a great way to run some
block of code many times. Each time that block, called the loop body, is executed,
it is called an iteration of the loop. To determine when to quit the loop, a test
can occur anywhere in the loop body, before the loop body, or after the loop body.
Using IF and GOTO it is possible to use any of those three styles of looping. If
the test is before the loop body, it is a pre-test loop. If the test is after the loop
body, it is a post-test loop. Other loops which have a test in the body or multiple
tests to exit do not have special names. They are just called loops. Any of these
loop structures can be written in ECMA-55 Minimal BASIC using IF and GOTO. If
you have a pre-test loop that uses a counter, then you can use the FOR and NEXT
statements to write many loops more easily. Note that some common tasks, such as

34 Chapter 5 Generating Sequences

getting user input and verifying it, are naturally post-test loops. It is normal for a
non-trivial program to have both some FOR loops and some other loops coded using
IF and GOTO. So why not just use IF and GOTO every time, since it always works?
Using FOR loops when possible makes the code easier to read, avoids having to
specify line numbers, and makes it clear what part of the program is the loop body.
In addition, often using a FOR loop your code runs a bit faster since the language
translator (compiler or interpreter) will have special optimized code sequences to
support FOR and NEXT that run a little bit faster than using IF and GOTO.

5.3 Summary 35

Exercises

1. Create a flowchart for an algorithm that generates the following sequence:
1, 2, 4, 5, 7, 8, 10, . . .

2. Write the ECMA-55 Minimal BASIC program for the flowchart in the
previous question.

Chapter 6

More Series

Many math problems can be solved with BASIC. Among the simplest of those are
generating series of numbers. Famous series that are generated with computers
include factorial numbers and Fibonacci numbers. This chapter will teach you how
to generate integer sequences, and that will give you some practice using ECMA-55
Minimal BASIC to solve simple math problems.

6.1 Factorials

One famous function is the factorial function. To compute the factorial of a number
n you would use equation 6.1.1

n! =
n∏︂

i=1
i = 1×2×3×4× . . .×n (6.1)

So if we wanted to generate a series of factorial values, how could we do it? We
know the first few terms of the series would be:

1!, 2!, 3!, 4!, 5!, . . .

Which after the factorial values were computed would be:

1, 2, 6, 24, 120, . . .

At first this seems like a very hard problem compared to those in the last chapter,
but actually solving this is not difficult if you realize the series can be rewritten.

1The
n∏︂

i=1
symbol means to loop n times, with i=1 the first time, i=2 the second time, etc. until

the last time when i=n. Each time through the loop the term formula is computed. In this case
the term formula is simply i, and those term values are multiplied together to form a product.

37

38 Chapter 6 More Series

Just rewrite the series like this:

1, (2× 1!), (3× 2!), (4× 3!), (5× 4!), . . .

Did you notice that each term is just the last term times a constant that happens
to be the term number? Once we know that, we can create the flowchart shown in
figure 6.1. The BASIC program to implement that algorithm is shown in figure 6.2
on page 39. The runtime output is shown in figure 6.3 on page 39.

Start

O ← 1

Output
“HOW MANY TERMS DO YOU WANT?”

Input value of N

C ← 1

C ≤ N
False

True

Output value of O

O ← O × C

C ← C + 1

Stop

Figure 6.1: Factorial Series Flowchart

6.1 Factorials 39

10 REM COMPUTE FACTORIAL USING ITERATIVE SOLUTION
20 REM O IS THE PRODUCT
30 REM C IS THE CURRENT TERM NUMBER
40 REM N IS THE NUMBER OF TERMS WE WANT
50 LET O=1
60 PRINT "HOW MANY TERMS DO YOU WANT";
70 INPUT N
80 FOR C=1 TO N STEP 1
90 LET O=O*C
100 PRINT O
110 NEXT C
120 END

Figure 6.2: Factorial Program Source

HOW MANY TERMS DO YOU WANT? 5
1
2
6
24
120

Figure 6.3: Factorial Program Output

40 Chapter 6 More Series

Line Value of
Number C O N Comments

? ? ? At the start all values are undefined
10 ? ? ? This is a comment so this line does nothing
20 ? ? ? This is a comment so this line does nothing
30 ? ? ? This is a comment so this line does nothing
40 ? ? ? This is a comment so this line does nothing
50 ? 1 ? Program stores value 1 into variable O

60 ? 1 ? Program prints prompt message
70 ? 1 5 Program reads value of N from keyboard
80 1 1 5 Program stores value 1 into variable C

Program checks if value of C which is 1
is greater than value of N which is 5
and it is not so program continues to line 90

90 1 1 5 Program computes value of O× value of C
and stores that into variable O

100 1 1 5 Display value of variable O
which is 1

110 2 1 5 Program increments value of loop index C
by 1 so the new value is now 2
and then jumps to line 80

80 2 1 5 Program checks if value of C which is 2
is greater than value of N which is 5
and it is not so program continues to line 90

90 2 2 5 Program computes value of O× value of C
and stores that into variable O

100 2 2 5 Display value of variable O
which is 2

110 3 2 5 Program increments value of loop index C
by 1 so the new value is now 3
and then jumps to line 80

80 3 1 5 Program checks if value of C which is 3
is greater than value of N which is 5
and it is not so program continues to line 90

90 3 6 5 Program computes value of O× value of C
and stores that into variable O

100 3 6 5 Display value of variable O
which is 6

Continued on next page

6.1 Factorials 41

Line Value of
Number C O N Comments
Continued from previous page

110 4 6 5 Program increments value of loop index C
by 1 so the new value is now 4
and then jumps to line 80

80 4 6 5 Program checks if value of C which is 4
is greater than value of N which is 5
and it is not so program continues to line 90

90 4 24 5 Program computes value of O× value of C
and stores that into variable O

100 4 24 5 Display value of variable O
which is 24

110 5 24 5 Program increments value of loop index C
by 1 so the new value is now 5
and then jumps to line 80

80 5 24 5 Program checks if value of C which is 5
is greater than value of N which is 5
and it is not so program continues to line 90

90 5 120 5 Program computes value of O× value of C
and stores that into variable O

100 5 120 5 Display value of variable O
which is 120

110 6 120 5 Program increments value of loop index C
by 1 so the new value is now 6
and then jumps to line 80

80 6 120 5 Program checks if value of C which is 6
is greater than value of N which is 5
and it is so program exits the loop
and continues on line 120

120 6 120 5 This is an END statement
so the program execution ends

Table 6.1: Factorial Runtime Trace With Input 5

42 Chapter 6 More Series

Have you noticed that the series output of the example programs so far is not as
nice as it could be? Instead of having multiple comma-delimited terms output on
a line, the program instead displays each term on a separate line.

Start

O ← 1

Output
“HOW MANY TERMS DO YOU WANT?”

Input value of N

C ← 1

C ≤ N
False

True

Output value of O without newline

O ← O × C

C >= N
True

False

Output “,” without newline

C ← C + 1

Output newline

Stop

Figure 6.4: Nicer Factorial Series Flowchart

It is possible to do a nicer job of out-
put formatting, but it requires using
more logic. ECMA-55 Minimal BA-
SIC will always output a space after
a numeric value. For positive num-
bers there is also a space before a
numeric value. This means that the
best we can hope for with N = 5 is
shown in figure 6.5 on page 43.

So what can we do to actually
achieve that output? We need to
know that the PRINT statement al-
ways will end with a newline unless
the last character on the line is a
semicolon2, in which case the output
is added to a pending buffer. Also,
a PRINT with no arguments is valid
and will force any partial output in
the pending buffer to be output fol-
lowed by a newline. If the pending
buffer is empty, then a blank line
will be output.

Armed with that knowledge, we can
change the algorithm logic as shown
in figure 6.4. The shaded area is
called the body of the loop. The pro-
gram created with that flowchart is
shown in figure 6.7 on page 43. Note
that the body of the loop is imple-

mented with the code between the FOR on line 80 and the NEXT on line 130. The
second diamond is implemented with the IF statement on line 110. The IF on
line 110 must branch to line 130 and not line 80 because the programs need to be
allowed to execute the NEXT so that the variable C gets incremented correctly.

The output of the program shown in figure 6.7 does give the nicer output if the
number of terms is small. If the number of terms is large then the automatic

2A comma also has this characteristic, but aligns the output on columns. This is explained in
chapter 9.

6.2 Fibonacci Numbers 43

wrapping algorithm used by the PRINT statement can result in ugly output as
shown in figure 6.6.3 Notice the comma at the start of the fourth line, which is
truly hideous. To fix this you need to use only 5 columns on any one line to ensure
that any size number can always fit. See chapter 9 for a detailed example of how
to generate nice-looking five column output.

HOW MANY TERMS DO YOU WANT? 5
1 , 2 , 6 , 24 , 120

Figure 6.5: Best Possible Factorial Output

HOW MANY TERMS DO YOU WANT? 27
1 , 2 , 6 , 24 , 120 , 720 , 5040 , 40320 , 362880 , 3.6288E+6 , 3.99168E+7 ,
4.79002E+8 , 6.22702E+9 , 8.71783E+10 , 1.30767E+12 , 2.09228E+13 ,
3.55687E+14 , 6.40237E+15 , 1.21645E+17 , 2.4329E+18 , 5.10909E+19 , 1.124E+21

, 2.5852E+22 , 6.20448E+23 , 1.55112E+25 , 4.03291E+26 , 1.08889E+28

Figure 6.6: Ugly Factorial Output

10 REM COMPUTE FACTORIAL USING ITERATIVE SOLUTION
20 REM O IS THE PRODUCT
30 REM C IS THE CURRENT TERM NUMBER
40 REM N IS THE NUMBER OF TERMS WE WANT
50 LET O=1
60 PRINT "HOW MANY TERMS DO YOU WANT";
70 INPUT N
80 FOR C=1 TO N STEP 1
90 LET O=O*C
100 PRINT O;
110 IF C>=N THEN 130
120 PRINT ",";
130 NEXT C
140 PRINT
150 END

Figure 6.7: Nicer Factorial Program Source

6.2 Fibonacci Numbers

One famous series that takes a little more effort to produce is called the Fibonacci
sequence. Each term is called a Fibonacci number. This sequence is:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
3The actual wrapping output may depend on your specific ECMA-55 Minimal BASIC

implementation, but if enough terms are output eventually the ugly automatic wrapping will
occur.

44 Chapter 6 More Series

For each number starting with the 2, you can compute the number with the formula:

Fi = Fi−1 + Fi−2 (6.2)

This means that each term of the series depends on the previous two terms of the
series. How can this series be generated with ECMA-55 Minimal BASIC? Actually,
the trick is to realize that the first two terms are 1 and the third term only needs
two previous terms, so we can generate the third term. Now that we have the third
term, we can generate the fourth term. For any term after the first two, all we
need is the previous two terms in the series. As long as we start with the first two
terms which we know are both 1, we can, in theory, generate the nth term for any
n, although machine precision will limit this when n grows large enough. In fact,
once you consider this carefully you will realize that for any term Fk, we only need
the previous two terms Fk−1 and Fk−2 to compute it. So with three variables we
can compute the terms of the series using equation 6.2. A flowchart to compute
the first ten terms of the Fibonacci Sequence is shown in figure 6.8 on page 45,
and a corresponding program is shown in figure 6.9 on page 45. The output of
the program is shown in figure 6.10 on page 46 and it is easy to verify that the
output is correct. The program is hard-coded to output ten terms, but you can
easily modify it to output N terms using the same method that was used in the
factorial program earlier in this chapter.

6.2 Fibonacci Numbers 45

Start

A← 1
B ← 1

Output A, B,
without newline

I ← 3

I <= 10

C ← A + B

Output C
without newline

A← B
B ← C

I ← I + 1

Output newline

Stop

True

False

Variables

I specifies which term is
being calculated

A is FI−2
B is FI−1
C is FI

Figure 6.8: Fibonacci Sequence Flowchart

10 REM GENERATE FIRST 10 TERMS OF FIBONACCI SEQUENCE
20 REM A IS TERM I-2
30 REM B IS TERM I-1
40 REM C IS TERM I
50 LET A=1
60 LET B=1
70 PRINT A, B,
80 FOR I=3 TO 10
90 LET C=A+B
100 PRINT C,
110 LET A=B
120 LET B=C
130 NEXT I
140 PRINT
150 END

Figure 6.9: Fibonacci Sequence Program Source

46 Chapter 6 More Series

1 1 2 3 5
8 13 21 34 55

Figure 6.10: Fibonacci Sequence Program Output

6.3 Taylor Series 47

6.3 Taylor Series

Many trigonometric functions can be approximated with a Taylor Series. You can
look up the formulas in math reference books or on the Internet. This section will
show how to compute the cosine of an angle θ specified in radians. The Taylor series
to approximate cosine(θ), where θ is in radians, is given by:

cosine(x) =
∞∑︂

n−0

(−1)n

(2n)! x2n = 1− x2

2! + x4

4! − . . . for all x

Note well that each term after the first actually can be computed using the previous
term. Consider the third term’s numerator. It is simply the previous term’s
numerator multiplied by x2. The third term’s denominator is a bit trickier, but it
is still 2!×3×4, which is really 2!×2n×(2n − 1) with n = 2. The last trick is to
realize that the need to add or subtract a term alternates, and terms 0, 2, 4, . . . are
added, and terms 1, 3, 5, . . . are subtracted. This is tricky, so it will help to show
how to generate term2 from term1 step-by-step. Remember, the first term is term0
and is always 1.

a = x2

n1 = a

d1 = 2

t1 = n1

d1

n2 = n1 × a

d2 = d1 × 2n× (2n− 1)

t2 = n2

d2

Now that we see the way to generate any term after term1 from the previous term,
it is clear a solution similar to that used by the Fibonacci sequence is needed, but
with a few more variables, and this time we only need to keep information about
one previous term instead of two.

The ECMA-55 Minimal BASIC implementation is shown in figure 6.11 on page 48.
It works for angles between 0 and π

8 , but larger angles do not work because of
precision issues with the floating point math that are beyond the scope of this text.

48 Chapter 6 More Series

10 REM COMPUTE COS(X) WITH TAYLOR SERIES FOR ANGLE A IN RADIANS
20 PRINT "WHAT IS THE ANGLE IN RADIANS";
30 INPUT A
40 PRINT "HOW MANY TERMS SHOULD I USE";
50 INPUT N
60 LET A2=A*A
70 LET N0=A2
80 LET D0=2
90 LET T=1-N0/D0
100 FOR I=2 TO N
110 LET N1=N0*A2
120 LET J1=2*I
130 LET D1=D0*J1*(J1-1)
140 LET T2=N1/D1
150 IF INT(I/2)<>I/2 THEN 170
160 LET T2=-T2
170 LET T=T+T2
180 NEXT I
190 PRINT COS(A),T
200 END

Figure 6.11: Taylor Series Cosine Source

6.3 Taylor Series 49

Start

Output
“WHAT IS THE ANGLE

IN RADIANS?”

Input A

Output
“HOW MANY TERMS

SHOULD I USE?”

Input N

A2← A× A

N0← A2
D0← 2

T ← 1− N0
D0

I ← 2

I <= N

N1← N0× A2
J1← 2× I

D1← D0× J1× (J1− 1)

T2← N1
D1

⌊︃
I
2

⌋︃
̸= I

2

T2← −T2

T ← T + T2

I ← I + 1

Output
COS(A), T

Stop

True

False

False

True

Figure 6.12: Taylor Series Cosine Flowchart

50 Chapter 6 More Series

Exercises

1. Create a flowchart for an algorithm that generates the following sequence:
10,−20, 30,−40, 50,−60, . . .

2. Write the ECMA-55 Minimal BASIC program for the flowchart in the
previous question.

3. The Fibonacci sequence can be extended to the negative numbers if you start
with terms 0 and 1 instead of 1 and 1, and you use the formula

Fi−2 = Fi − Fi−1

Create a flowchart for the negafibonacci numbers for terms F−1 through F−10.

4. Write and test the program for the flowchart in the previous question.

5. The Taylor series to approximate sine(θ), where θ is in radians, is given by:

sine(x) =
∞∑︂

n−0

(−1)n

(2n + 1)!x
2n+1 = x− x3

3! + x5

5! − . . . for all x

Create a flowchart to use this method and then write the program to calculate
the sine function using the Taylor series and compare the results it produces
with the results of the built-in SIN() function for the same angle. What
value of n works best for the angle π

3 ?

Chapter 7

Random Numbers

One simple game some young people play when learning about mathematics is
called high-low. In this two-person game, player one thinks of a random integer
value within some range. Player two then tries to guess the number. If player two’s
guess is lower than player one’s value, then player one will say “Too low!” If player
two’s guess is higher than player one’s value, then player one will say “Too high!”
When player two’s guess is correct, player one will say “Correct!” We will write a
program that plays this game as player one, with the user being player two. The
first thing to do is create the algorithm. The logic you need is shown in figure 7.1.

Start

A← random value in range 1 . . . 100

Output
“ENTER YOUR GUESS”

Input G

G = A
True

False

Output
“CORRECT!”

Stop

G < A
True

False

Output
“TOO LOW!”

Output
“TOO HIGH!”

Figure 7.1: High-low flowchart

You already know how to write code for input and output. You have learned about
conditional branches, unconditional branches, and assignment. But one thing that
has not been explained yet is how to generate a random number. BASIC has a
special built-in function for this called RND. The RND function takes no arguments

51

52 Chapter 7 Random Numbers

and will return a value in the range 0 ≤ X < 1 that is a pseudo-random number.
A pseudo-random number is not truly random, only an approximation of a random
number. However, it is a good enough approximation for most games and we will
use it. In our game, we want to limit the values that player one chooses to be
between 1 and 100. To achieve this the program will use a formula like this:

A = 1 + INT(RND× 100)

This works since if RND returns something like 0.99999 then when we multiply by
100 we get 99.999 and the INT() function will then return 99 and we add 1 and
get 100, the maximum value we wanted. The INT(X) function takes the argument
X and returns the floor of that value.1 It is a built-in function for BASIC. At the
other end of the range, if RND returns 0, we add 1 and get 1, the minimum value
we wanted. With that knowledge, it is possible to write the program shown in
figure 7.2.

10 LET A=1+INT(RND*100)
20 PRINT "ENTER YOUR GUESS";
30 INPUT G
40 IF G=A THEN 100
50 IF G>A THEN 80
60 PRINT "TOO LOW!"
70 GOTO 20
80 PRINT "TOO HIGH!"
90 GOTO 20
100 PRINT "CORRECT!"
110 END

Figure 7.2: High-Low Program

There remains only one problem. Every time you run this game, it picks the
same random value. That’s not very fun now is it? This is a feature of BASIC
that people find strange the first time they see it. By default, BASIC will always
generate the same series of random numbers. This is so that you can test your
program and know you will get exactly the same results every time. When you want
truly random behavior, you need to add a special statement at the beginning of
the program called RANDOMIZE. We also would like to have the program remember
how many guesses the human player needed to guess the number and to tell the
human player that number once they have finally guessed correctly. A flowchart
that can do that is shown in figure 7.3 on page 53, and the corresponding program
is shown in figure 7.4 on page 54. Please notice that this program is better than the
first version since it includes comments describing the program and the variables

1In math texts, the function floor(x) is written ⌊x⌋ and is defined as the largest integer not
greater than x, so floor(.9) is 0, floor(-.9) is -1, floor(1.1) is 1, floor(-1.1) is -2, etc. Applying the
floor function to an integer returns that same integer value, so floor(3) is 3 and floor(-3) is -3.

Chapter 7 Random Numbers 53

that are used. Also after careful inspection you will see that while the RANDOMIZE
statement is included in the program source code, it is not shown in the flowchart.
This is because that is an implementation detail of BASIC. In a flowchart, you can
assume that if it says random value that the intent is to get a value as random as
possible. To turn that feature on in ECMA-55 Minimal BASIC, the RANDOMIZE is
needed.

Start

C ← 0

A← random value in range 1 . . . 100

Output
“ENTER YOUR GUESS”

Input G

C ← C + 1

G = A
True

False

Output
“CORRECT!”

Output “YOU USED”
C “GUESSES”

Stop

G < A
True

False

Output
“TOO LOW!”

Output
“TOO HIGH!”

Figure 7.3: Improved High-low flowchart

You can see a sample run of the program in figure 7.5. Can you see a pattern to
the guesses? The number of guesses required is never more than seven. We will
learn why in chapter 15.

54 Chapter 7 Random Numbers

10 REM HIGH-LOW GUESSING GAME
20 REM A IS THE ANSWER THE COMPUTER PLAYER HAS CHOSEN
30 REM G IS THE GUESS THE HUMAN PLAYER HAS CHOSEN
40 REM C IS THE NUMBER OF GUESSES THE HUMAN PLAYER HAS MADE
50 RANDOMIZE
60 LET C=0
70 LET A=1+INT(RND*100)
80 PRINT "I HAVE CHOSEN AN INTEGER VALUE BETWEEN 1 AND 100. TRY AND"
90 PRINT "GUESS WHAT NUMBER I HAVE CHOSEN."
100 PRINT "ENTER YOUR GUESS";
110 INPUT G
120 LET C=C+1
130 IF G=A THEN 190
140 IF G>A THEN 170
150 PRINT "TOO LOW!"
160 GOTO 100
170 PRINT "TOO HIGH!"
180 GOTO 100
190 PRINT "CORRECT!"
200 PRINT "YOU USED";C;"GUESSES."
210 END

Figure 7.4: Improved High-Low Program

I HAVE CHOSEN AN INTEGER VALUE BETWEEN 1 AND 100. TRY AND
GUESS WHAT NUMBER I HAVE CHOSEN.
ENTER YOUR GUESS? 50
TOO HIGH!
ENTER YOUR GUESS? 25
TOO HIGH!
ENTER YOUR GUESS? 12
TOO LOW!
ENTER YOUR GUESS? 19
CORRECT!
YOU USED 4 GUESSES.

Figure 7.5: Improved High-Low Program Output

Chapter 7 Random Numbers 55

Exercises

1. Create a flowchart for the program shown in figure 7.4 on page 54 by starting
with figure 7.1 on page 51 and adding the new logic for counting the number
of guess the human player has made and reporting that number at the end
of the game.

2. Change the program so that 100 ≤ A < 200.

Chapter 8

Multi-way Branching

In this chapter you will learn to how implement multi-way branching. A multi-way
branch is a branch that has more than two possible destinations. When drawn
with a flowchart, the diamond symbol is used, but unlike a normal conditional
branch which has only two outgoing edges, a multi-way branch has more than two
outgoing edges. An ECMA-55 Minimal BASIC IF statement implements a normal
conditional branch, so it has only two destinations: the jump target specified after
the THEN keyword when the condition is true, and the next line in the program
when the condition is false. A multi-way branch must support more than just two
destinations.

An example of a simple flowchart fragment for a five-way branch is shown in
figure 8.1. When the expression within the diamond is evaluated, instead of just
returning true or false, it will return one of five values in the set {1, 2, 3, 4, 5}.
These outputs are labeled with Case 1, Case 2, . . . Case 5 in the flowchart.

ExpressionAction 1

Action 2

Action 3

Action 4

Action 5Case 1

Case 2

Case 3

Case 4

Case 5

Figure 8.1: Five-way branch flowchart

This flowchart uses process boxes with dashes instead of solid lines for the border.
This nested code symbol represents potentially nested code, but could be a single
output or assignement statement, or something more complex like a subroutine
call or a sequence of statements.

57

58 Chapter 8 Multi-way Branching

8.1 Implementation of multi-way branch using IF

A multi-way branch can be implemented using a series of conditional branch
statements, as shown in the flowchart in figure 8.2.

X ← Expression

X = 1 Action 1

X = 2 Action 2

X = 3 Action 3

X = 4 Action 4

X = 5 Action 5

Output
“Error”

False

True

False

True

False

True

False

True

True

False

Figure 8.2: Five one-way branches flowchart

An ECMA-55 Minimal BASIC program which implements the flowchart (just
printing ACTION # for each action) is shown in figure 8.3 on page 59. It requires,
in the worst case, evaluating all five conditions. The worst case occurs when a
user enters a value that is invalid. An alternate solution with equivalent semantics
using a style that some people prefer more is shown in figure 8.4 on page 59. The
alternate solution groups each action with its corresponding condition, while the
first solution groups the conditions and actions into two different sections. Which
style to use is a matter of personal preference, since neither style is clearly superior.

8.1 Implementation of multi-way branch using IF 59

10 PRINT "ENTER A NUMBER BETWEEN 1 AND 5 (INCLUSIVE)";
20 INPUT X
30 IF X=1 THEN 100
40 IF X=2 THEN 120
50 IF X=3 THEN 140
60 IF X=4 THEN 160
70 IF X=5 THEN 180
80 PRINT "INVALID INPUT!"
90 GOTO 10
100 PRINT "ACTION 1"
110 GOTO 190
120 PRINT "ACTION 2"
130 GOTO 190
140 PRINT "ACTION 3"
150 GOTO 190
160 PRINT "ACTION 4"
170 GOTO 190
180 PRINT "ACTION 5"
190 END

Figure 8.3: Five one-way IF statements

10 PRINT "ENTER A NUMBER BETWEEN 1 AND 5 (INCLUSIVE)";
20 INPUT X
30 IF X<>1 THEN 60
40 PRINT "ACTION 1"
50 GOTO 200
60 IF X<>2 THEN 90
70 PRINT "ACTION 2"
80 GOTO 200
90 IF X<>3 THEN 120
100 PRINT "ACTION 3"
110 GOTO 200
120 IF X<>4 THEN 150
130 PRINT "ACTION 4"
140 GOTO 200
150 IF X<>5 THEN 180
160 PRINT "ACTION 5"
170 GOTO 200
180 PRINT "INVALID INPUT!"
190 GOTO 10
200 END

Figure 8.4: Five one-way IF statements (alternate solution)

60 Chapter 8 Multi-way Branching

8.2 Implementation of multi-way branch using ON. . . GOTO

While the technique just shown works, it is not very efficient if you have a large
number of outgoing branches. For this reason, there is a more direct way to
implement multi-way branches in the ECMA-55 Minimal BASIC language. You
can use the ON. . . GOTO statement. The syntax of the ECMA-55 Minimal BASIC
statement is show in figure 8.5.

ON numeric-expression GOTO line-number, ... ,line-number

Figure 8.5: ON . . . GOTO statement

This statement will evaluate the expression and if the value is 1, it will jump to
the first line number in the list. If the value is 2, it will jump to the second line
number in the list. If the value is less than 1 or greater than the number of line
numbers in the list, the program will exit with an error message. This requires
that you ensure the expression can never have a value that is less than 1 or greater
than the number of elements in the comma-delimited list of line numbers specified
after the GOTO keyword.

The ECMA-55 Minimal BASIC program in figure 8.6 implements the same seman-
tics as the program shown in figure 8.3 on page 59, but takes advantage of the true
multi-way branch support provided by the ON. . . GOTO statement.

10 PRINT "ENTER A NUMBER BETWEEN 1 AND 5 (INCLUSIVE)";
20 INPUT X
30 LET X=INT(X)
40 IF X<1 THEN 170
50 IF X>5 THEN 170
60 ON X GOTO 70,90,110,130,150
70 PRINT "ACTION 1"
80 GOTO 190
90 PRINT "ACTION 2"
100 GOTO 190
110 PRINT "ACTION 3"
120 GOTO 190
130 PRINT "ACTION 4"
140 GOTO 190
150 PRINT "ACTION 5"
160 GOTO 190
170 PRINT "INVALID INPUT!"
180 GOTO 10
190 END

Figure 8.6: One five-way ON. . . GOTO statement

Note that it still requires three comparisons in the best case since we must check
that the value is not too low on line 40 and not too high on line 50. But in the

8.2 Implementation of multi-way branch using ON. . . GOTO 61

worst case, we still use just three comparisons, no matter how many outgoing edges
the multi-way branch has. If you have more than 3 possibilities, it is better to use
the ON. . . GOTO statement than a series of IF statements.

There is one weakness, however, that must be mentioned. The expression evaluated
in the ON. . . GOTO statement must be numeric. ECMA-55 Minimal BASIC’s multi-
way branch statement does not work for string expressions. If you ever find you
need to implement a multi-way branch and the condition has a string type, you
must use multiple IF statements in that case.

62 Chapter 8 Multi-way Branching

Exercises

1. Draw a flowchart with a seven-way branch where each branch is for each day
of the week as a numeric value, with 1=Monday, 2=Tuesday, etc.

2. Write the ECMA-55 Minimal BASIC program for the flowchart in the previous
question.

3. Draw a flowchart with a seven-way branch where each branch is for each day
of the week as a string value such as “MONDAY”, “TUESDAY”, etc.

4. Write the ECMA-55 Minimal BASIC program for the flowchart in the previous
question.

Chapter 9

Multicolumn Output

In this chapter you will learn to how generate nice five column output. The
ECMA-55 Minimal BASIC language supports five output columns with the comma
delimiter of the PRINT statement. To make good looking tables with five columns,
this feature should be used together with logic to ensure no extra blank lines are
printed. The trick is that for the first four columns, the number is printed and
the PRINT statement uses a trailing comma, but for the fifth column no trailing
comma is used, forcing a newline.

9.1 First Draft

To accomplish this, we need more condition tests. This results in a more complex
flowchart as shown in figure 9.1. Now there are three diamonds. One of those is
taken care of with the FOR statement, but the other two will require IF statements.

An implementation of the flowchart in figure 9.1 on page 64 is shown in figure 9.2
on page 65. You can see the test for whether we are printing the fifth column or
not on lines 40 and 120. Line 70 has the correct PRINT with the trailing comma to
use for the first four columns and line 50 has the PRINT without the trailing comma
for the fifth column. The bare PRINT statement on line 130 will only be used if
the test on line 120 shows that the last value printed was not in the fifth column.
This condition is reversed on line 120 since we want to skip over the bare PRINT if
the last column printed was the fifth column, whereas the test on line 40 wants to
fall through to the bare print if we are on the fifth column. The condition A/B =
INT(A/B) will be true if A is an integer multiple of B for any non-zero, positive
value of B.1 Remember, the INT() function is the mathematical floor(x) function,
as explained in a footnote2 in chapter 7.

1Some people do this with a modulus by testing if A modulo B = 0, but ECMA-55 Minimal
BASIC does not support a modulo or an integer remainder operator.

2See the footnote about floor on page 52.

63

64 Chapter 9 Multicolumn Output

Start

Output
“HOW MANY TERMS DO YOU WANT?”

Input value of N

C ← 1

C ≤ N
False

True

C/5 = INT(C/5) False

True

Output value of C
with newline

Output value of C and
move to next output column

without newline

C ← C + 1

C ← C − 1

C/5 = INT(C/5)

True

False

Output a newline

Stop

Figure 9.1: Five column program flowchart

When testing the program in figure 9.2 on page 65, we must test both the case
where N is an exact multiple of five and when it is not. The case where N is not
an exact multiple of five is shown in figure 9.3 on page 65, and the case where N is
an exact multiple of five is shown in figure 9.4 on page 65.

9.1 First Draft 65

10 PRINT "HOW MANY TERMS DO YOU WANT TO PRINT";
20 INPUT N
30 FOR C=1 TO N STEP 1
40 IF C/5<>INT(C/5) THEN 70
50 PRINT C
60 GOTO 80
70 PRINT C,
80 NEXT C
90 REM THE FINAL NEXT ADDS ONE TO C BREAKING THE COUNT
100 REM SO SUBTRACT ONE NOW TO COMPENSATE FOR THAT
110 LET C=C-1
120 IF C/5=INT(C/5) THEN 140
130 PRINT
140 END

Figure 9.2: Program for five column output

HOW MANY TERMS DO YOU WANT TO PRINT? 17
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17

Figure 9.3: Five column output when not a multiple of 5

HOW MANY TERMS DO YOU WANT TO PRINT? 15
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

Figure 9.4: Five column output for a multiple of 5

66 Chapter 9 Multicolumn Output

9.2 Second Draft

Now that you have seen a way to print using the five columns available in ECMA-55
Minimal BASIC, it is time to investigate how to convert the specific solution that
just prints the sequence of counting numbers into a more general solution that can
display any sequence you can calculate. Fortunately, the changes are very small.
Instead of directly printing the loop index C, and new variable T is used to hold
the term value. So instead of printing C the program will be printing T that is
calculated at the top of the loop body before the logic about printing in columns.
As an example, consider a program to compute this series:

2, 5, 10, 17, 26, . . .

The terms of the series would be computed using formula 9.1, where the term is a
function of the loop index C and C ranges from 1 to some upper bound N where
N is the number of terms in the series that you want to print.

T = C2 + 1 (9.1)

The updated flowchart that can implement this idea is shown in figure 9.5 on
page 67, and the corresponding BASIC program is shown in figure 9.6 on page 68.
This solution will work well for any term that can be calculated with a simple
formula. The term T is computed with a LET statement on line 50, and the PRINT
statements on lines 70 and 90 have been updated to display the term T instead of
the loop index C. Now any time you want to change the formula you can update
just one line, line 50, and nothing else in the program will need to change.

This new program still does not allow us to start at any arbitrary term but instead
only allows starting with C equal to one. A program where the limits are constants
like 1 instead of variables limits how we can use the program. When a program
has a constant literal value in the logic instead of a using variable, computer
programmers will say that the program is hard-coded. In BASIC, the FOR loop step
is also hard-coded to be 1 by default. However, you can use the STEP keyword,
together with a variable or arithmetic expression, to override that.

9.2 Second Draft 67

Start

Output
“HOW MANY TERMS DO YOU WANT?”

Input value of N

C ← 1

C ≤ N
False

True

T ← C × C + 1

C/5 = INT(C/5) False

True

Output value of T
with newline

Output value of T and
move to next output column

without newline

C ← C + 1

C ← C − 1

C/5 = INT(C/5)

True

False

Output a newline

Stop

Figure 9.5: Improved five column program flowchart

68 Chapter 9 Multicolumn Output

10 PRINT "HOW MANY TERMS DO YOU WANT TO PRINT";
20 INPUT N
30 FOR C=1 TO N STEP 1
40 REM COMPUTE TERM T
50 LET T=C*C+1
60 IF C/5<>INT(C/5) THEN 90
70 PRINT T
80 GOTO 100
90 PRINT T,
100 NEXT C
110 REM THE FINAL NEXT ADDS ONE TO C BREAKING THE COUNT
120 REM SO SUBTRACT ONE NOW TO COMPENSATE FOR THAT
130 LET C=C-1
140 IF C/5=INT(C/5) THEN 160
150 PRINT
160 END

Figure 9.6: Improved program for five column output

9.3 Third Draft 69

9.3 Third Draft

We learned in a previous chapter that we can do better. Let’s update the program
to use the variable S for the initial value of the loop index C and D for the amount
to increment the loop index C after each iteration of the loop. The flowchart will
have the same shape, and the program will be very similar too. To make the
program easier to use, we will ask for each of the variables the user must specify
separately. The program needs the user to specify values for N , S, and D, so there
will be three prompts and three reads from the keyboard. This makes the flowchart
seem much longer but there are no new diamonds in the flowchart so the new logic
is just straight-line code. The improved flowchart is shown in figure 9.7 on page 70,
and the improved BASIC program is shown in figure 9.8 on page 71.

Everything should be great, but when we run this program there are still some
problems. Look at the sample session shown in figure 9.9 on page 71. It is easy to
see that there are not 17 terms. Also, the 10 should have been in the third column
with the first two columns being blank. It did start at the correct term, and it is
skipping every other term as intended by setting the loop increment to 2, so the
program is almost working. However, it quits before all 17 terms are displayed.

70 Chapter 9 Multicolumn Output

Start

Output
“HOW MANY TERMS DO YOU WANT?”

Input value of N

Output
“WHAT IS THE STARTING LOOP INDEX?”

Input value of S

Output
“HOW MUCH DO I INCREMENT THE LOOP EACH ITERATION?”

Input value of D

C ← S

C ≤ N
False

True

T ← C × C + 1

C/5̸=INT(C/5) True

False

Output value of T
with newline

Output value of T and
move to next output column

without newline

C ← C + D

C ← C − 1

C/5 = INT(C/5)

True

False

Output a newline

Stop

Figure 9.7: Even better five column program flowchart

9.3 Third Draft 71

10 PRINT "HOW MANY TERMS DO YOU WANT TO PRINT";
20 INPUT N
21 PRINT "WHAT IS THE STARTING LOOP INDEX";
22 INPUT S
23 PRINT "HOW MUCH DO I INCREMENT THE LOOP EACH ITERATION";
24 INPUT D
30 FOR C=S TO N STEP D
40 REM COMPUTE TERM T
50 LET T=C*C+1
60 IF C/5<>INT(C/5) THEN 90
70 PRINT T
80 GOTO 100
90 PRINT T,
100 NEXT C
110 REM THE FINAL NEXT ADDS ONE TO C BREAKING THE COUNT
120 REM SO SUBTRACT ONE NOW TO COMPENSATE FOR THAT
130 LET C=C-1
140 IF C/5=INT(C/5) THEN 160
150 PRINT
160 END

Figure 9.8: Even better program for five column output

HOW MANY TERMS DO YOU WANT TO PRINT? 17
WHAT IS THE STARTING LOOP INDEX? 3
HOW MUCH DO I INCREMENT THE LOOP EACH ITERATION? 2
10 26
50 82 122 170 226
290

Figure 9.9: Five column failure

72 Chapter 9 Multicolumn Output

9.4 Final Program

The first bug to fix is the failure to start showing the first term in the correct
column. We need to add some more logic before the loop but after the user has
entered all of the values for N , S, and D. The new logic needs to output blank
columns if we do not start on a term that would go in column 1. Positive terms
that can start in column 1 must have equation 9.2 true.

(C modulo 5) + 1 = 1 (9.2)

The bug fixes will result in an even larger flowchart. When a flowchart has to span
more than one page, circle connectors are used. An arrow into a circle connector
means the logic continues on another page. An arrow out of a circle connector
means the logic is continuing from a different page. Each connector with arrows
going outward must have a unique identifier in the circle, usually a single upper-case
letter for small flowcharts. It is invalid if an arrow goes into a connector with
a symbol when no corresponding connector with that symbol and arrows going
outward exists. Circle connectors can even be used on a single page if there is no
way to draw a connecting line that does not intersect with any other connecting
line.

It is time to design the new logic that will emit blank columns on the first line when
required. Since there are five columns, we know there are five cases to consider as
shown in table 9.1.

Number of BASIC
Value of Choice Columns source

(INT(C/5)) Number to skip code
0 1 4 PRINT ,,,,
1 2 0 Do nothing
2 3 1 PRINT ,
3 4 2 PRINT ,,
4 5 3 PRINT ,,,

Table 9.1: Column Skip Table

The expression you need is given in equation 9.3.

1 + INT(C)− 5× INT(INT(C)/5) (9.3)

The other bug was that we did not print enough terms. This is because the loop
needs to run N times, but if we skip by any value of D except 1 it gets tricky. The

9.4 Final Program 73

best solution is to have the loop index variable C start at S and increment by 1
for N times. For computing the terms to display, keep in mind that basically we
want to display Y for some X where X is actually a function of C. We will use a
new variable X to hold the value that is a function of C. Now the column logic
can depend on C, and the loop will execute N times, but the Y we display will
still be correct.

The updated flowchart that includes those changes is shown in two pieces, one in
figure 9.10 on page 74 and the other in figure 9.11 on page 75. The circle with the
“A” inside is the connector between the two pieces. The flowchart was too big to
draw on one page, so it was split into two pieces and uses a connector.

Now that the flowchart is done, it must be converted into ECMA-55 Minimal
BASIC source code. A flowchart for a five-way branch should be implemented with
an ON. . . GOTO statement. The trick was to determine what the expression must
be, and we already did that by examining the column skip table in figure 9.1 on
page 72.

The resulting BASIC program is shown in figure 9.12 on page 76. This BASIC
program has logic that is quite tricky so there are plenty of comments included
using REM statements. Finally this version of the program now produces the correct
output as shown in figure 9.13 on page 77.

74 Chapter 9 Multicolumn Output

Start

Output
“HOW MANY TERMS DO YOU WANT?”

Input value of N

Output
“WHAT IS THE STARTING LOOP INDEX?”

Input value of S

Output
“HOW MUCH DO I INCREMENT THE LOOP EACH ITERATION?”

Input value of D

A

1 + INT(S)−
5 ∗ INT(INT(S)/5)

Move output position
forward 4 columns

Do nothing

Move output position
forward 1 column

Move output position
forward 2 columns

Move output position
forward 3 columns

1

2

3

4

5

Figure 9.10: Full-featured multicolumn program flowchart (1 of 2)

9.4 Final Program 75

A

C ← S

C ≤ S + N − 1
False

True

X = S + (C − S) ∗D
Y = X ∗X + 1

C/5̸=INT(C/5) True

False

Output value of Y
with newline

Output value of Y and
move to next output column

without newline

C ← C + 1

C ← C − 1

C/5 = INT(C/5)

True

False

Output a newline

Stop

Figure 9.11: Full-featured multicolumn program flowchart (2 of 2)

76 Chapter 9 Multicolumn Output

10 PRINT "HOW MANY TERMS DO YOU WANT TO PRINT";
20 INPUT N
30 PRINT "WHAT IS THE STARTING LOOP INDEX";
40 INPUT S
50 PRINT "HOW MUCH DO I INCREMENT THE LOOP EACH ITERATION";
60 INPUT D
70 REM
80 REM VERY COUNTER-INTUITIVE BUT WE NEED TO THINK ABOUT IT.
90 REM INT(S)-5*INT(INT(S)/5) HAS A RANGE 0..4 BUT WE NEED
100 REM A RANGE 1..5. SO WE ADD ONE TO THE EXPRESSION AND GET
110 REM 1+INT(S)-5*INT(INT(S)/5), AND THAT DOES HAVE THE CORRECT
120 REM RANGE, BUT WE WANT S=1 TO MEAN SKIP 0 COLUMNS, S=2 TO MEAN
130 REM SKIP 1 COLUMN, ETC., SO WE BETTER MAKE A CHART:
140 REM S EXPRESSION ACTION LINE
150 REM 1 2 DO NOTHING 400
160 REM 2 3 SKIP 1 COLUMN 280
170 REM 3 4 SKIP 2 COLUMNS 310
180 REM 4 5 SKIP 3 COLUMNS 340
190 REM 5 1 SKIP 4 COLUMNS 370
200 REM PUTTING LINE NUMBERS IN EXPRESSION ORDER WILL YIELD
210 REM THE LIST ON LINE 270
220 REM
230 ON 1+INT(S)-5*INT(INT(S)/5) GOTO 330,360,240,270,300
240 REM SKIP 1 COLUMN
250 PRINT ,
260 GOTO 370
270 REM SKIP 2 COLUMNS
280 PRINT ,,
290 GOTO 370
300 REM SKIP 3 COLUMNS
310 PRINT ,,,
320 GOTO 370
330 REM SKIP 4 COLUMNS
340 PRINT ,,,,
350 GOTO 370
360 REM DO NOTHING AND FALL THROUGH
370 REM DONE WITH MULTI-WAY BRANCH
380 REM
390 REM C IS THE COUNTER THAT WILL INCREMENT BY 1 FROM S TO S+N-1
400 REM FOR A TOTAL OF N ITERATIONS
410 REM X IS THE X FOR OUR EQUATION F(X)=X^2+1
420 REM Y IS F(X) THAT WE COMPUTE AND PRINT
430 REM COLUMN LOGIC USES C, BUT Y COMPUTATION
440 REM USES X WHICH ITSELF IS A FUNCTION OF S,C, AND D
450 FOR C=S TO S+N-1 STEP 1
460 REM COMPUTE CURRENT X=G(C)
470 LET X=S+(C-S)*D
480 REM COMPUTE TERM Y=F(X)=F(G(C))
490 LET Y=X*X+1
500 IF C/5<>INT(C/5) THEN 530
510 PRINT Y
520 GOTO 540
530 PRINT Y,
540 NEXT C
550 REM THE FINAL NEXT ADDS 1 TO C BREAKING THE COUNT
560 REM SO SUBTRACT 1 NOW TO COMPENSATE FOR THAT
570 LET C=C-1
580 IF C/5=INT(C/5) THEN 600
590 PRINT
600 END

Figure 9.12: Full-featured multicolumn program

9.4 Final Program 77

HOW MANY TERMS DO YOU WANT TO PRINT? 17
WHAT IS THE STARTING LOOP INDEX? 3
HOW MUCH DO I INCREMENT THE LOOP EACH ITERATION? 2

10 26 50
82 122 170 226 290
362 442 530 626 730
842 962 1090 1226

Figure 9.13: Full-featured Multicolumn Program Output

78 Chapter 9 Multicolumn Output

Exercises

1. Design a flowchart for a full-featured program that uses just four columns.

2. Write the ECMA-55 Minimal BASIC program for the flowchart in the
previous question.

Chapter 10

Arrays

Scalar variables are ideal for holding single values, but often you need to solve
problems that involve groups of similar data. A common example is keeping a short
list in a computer, such as all of the grades for a quiz, so that you can generate a
report or do some statistical analysis.

Most programming languages provide some built-in data structure to help you do
this, and ECMA-55 Minimal BASIC is no exception. The BASIC data type that
allows programming with groups of data is called an integer-indexed array. Since
this is the only kind of array supported by ECMA-55 Minimal BASIC, we’ll just
use the shorter name array to refer to integer-indexed arrays in this book. The
concept of an array is simple. An array is a contiguous block of memory divided
into many pieces of the exactly the same size. Each piece is called an element.
To access an element you use a number, called a subscript, to specify precisely
which of the array elements to use. Another common name for a subscript is an
index. The first element is accessed by using subscript 0. The second element is
accessed by using subscript 1, etc. For an array with 9 elements, the subscripts are
0, 1, 2, . . . , 8. In mathematics the array concept is sometimes referred to as a vector .
In figure 10.1 the array name is on the left and is A, and the gray boxes represent
the memory storage locations for the array. The numbers within those boxes are
the values stored in those memory locations. The small numbers across the top are
the indices. In this example the third element is 4 and is located at index 2, and
the last element is at index 8 and has the value 5. Computer scientists refer to
arrays that begin at index 0 as zero-based arrays. The C and C++ languages both
use zero-based arrays.

A

0

0

1

1

2

4

3

4

4

0

5

2

6

7

7

8

8

5

Figure 10.1: Zero-based Array A with 9 elements

In BASIC, arrays have single-letter names from A to Z. It is a fatal error to use the
same single-letter variable name for both a scalar variable and an array variable.
The subscript expression is specified by appending a parenthesized arithmetic

79

80 Chapter 10 Arrays

expression to the array letter. For instance, to access the third element, which
is element 2, you would use A(2). Instead of a constant, an expression can be
used. For example, A(I+2) would calculate the value of the expression I+2 at
runtime, and then use that as the subscript. If I had the value 3, then this would
get element 5, or the sixth element of the array.

In ECMA-55 Minimal BASIC, by default an array implicitly has 11 elements with
indices 0, 1, 2, . . .10. It is possible to use a different size by using a special statement,
the DIM statement, to declare the size explicitly. However, the DIM statement must
occur before any use of the array in the program. The DIM statement specifies
the maximum subscript value permitted, not the number of elements. It is not
permitted to explicitly dimension any array more than once in a program. Wise
programmers put the DIM statements near the beginning of the program.

10.1 Average Value

To better understand how to use arrays in BASIC, some examples are needed. The
first example will compute the average value of elements in an array. The formula
to compute the average value of all elements in an array A with n elements ranging
from A0 . . . An−1 is shown in equation 10.1.

Average =

n−1∑︁
i=0

Ai

n
(10.1)

Once the problem is considered, it is easy to see that the required algorithm will
have three parts. In the first phase it must get the data values from the user to
populate the array. In the second phase it will process that data to compute the
average. In the third and final phase it will display the average value. A flowchart
for one possible solution is shown in figure 10.2 on page 81. The corresponding
ECMA-55 Minimal BASIC program is shown in figure 10.3 on page 82. Note that
the DIM statement specifies the value 7 as its argument. The argument is the
number of the maximum subscript possible, not the number of elements directly.
Since elements start at 0, DIM(7) means that there are 8 elements. A sample run
of the program is shown in figure 10.4 on page 82.

10.1 Average Value 81

Start

I ← 0

I ≤ 7 False

True

Output
“VALUE OF ELEMENT” I “IS”

Input A(I)

I ← I + 1

T ← 0

I ← 0

I ≤ 7

False

True

T ← T + A(I)

I ← I + 1

V ← T/8

Output
“AVERAGE VALUE IS” V

Stop

Figure 10.2: Compute Average Value Flowchart

82 Chapter 10 Arrays

10 REM ARRAY DEMO
20 REM
30 REM A IS THE ARRAY OF 8 ELEMENTS
40 REM I IS AN INDEX FOR THE LOOP
50 REM T IS THE TOTAL VALUE OF ALL ELEMENTS
60 REM V IS THE AVERAGE VALUE OF ALL ELEMENTS
70 REM
80 DIM A(7)
90 REM GET THE ELEMENT VALUES
100 FOR I=0 TO 7
110 PRINT "VALUE OF ELEMENT";I;"IS ";
120 INPUT A(I)
130 NEXT I
140 REM COMPUTE AVERAGE VALUE OF THE ELEMENT VALUES
150 LET T=0
160 FOR I=0 TO 7
170 LET T=T+A(I)
180 NEXT I
190 LET V=T/8
200 PRINT "AVERAGE VALUE IS:";V
210 END

Figure 10.3: Compute Average Value

VALUE OF ELEMENT 0 IS ? 10
VALUE OF ELEMENT 1 IS ? 20
VALUE OF ELEMENT 2 IS ? 0
VALUE OF ELEMENT 3 IS ? 5
VALUE OF ELEMENT 4 IS ? 15
VALUE OF ELEMENT 5 IS ? 7
VALUE OF ELEMENT 6 IS ? 13
VALUE OF ELEMENT 7 IS ? 10
AVERAGE VALUE IS: 10

Figure 10.4: Compute Average Value Program Output

10.2 Maximum Value 83

Some people do not like using subscripts that start with zero, and prefer to think of
arrays as starting with subscript 1. Computer science people call arrays that begin
at index 1 one-based arrays. In ECMA-55 Minimal BASIC you can request that
arrays start on 1 by using the special OPTION BASE 1 statement. If you do this,
please remember that for DIM A(100), the subscripts will go from 1, 2, . . . , 99, 100
for a total of 100 elements. By default the subscripts would instead go from
0, 1, . . . , 99, 100 for a total of 101 elements. If the OPTION BASE 1 statement is
used, it must precede all DIM statements, and it will apply to all arrays in the
program. When working with arrays, you must always keep in mind the actual
memory layout of your arrays. Figure 10.5 shows the same data as in Figure 10.1
on page 79, but stored in a one-based array.

A

1

0

2

1

3

4

4

4

5

0

6

2

7

7

8

8

9

5

Figure 10.5: One-based Array A with 9 elements

10.2 Maximum Value

Let’s look at another example program. Often a program must find the maximum
value in a list of elements stored in an array. Putting data into the array is identical
to the program described by the flowchart in figure 10.2 on page 81. Once again the
program will then loop over all the elements to access each one. However, instead
of adding each element value to a total, the element value will be compared to the
current highest value. Since when we start looking there is no highest value, the
program just chooses the first element as the highest value. It stores that value into
the M variable, and stores the first index in the J variable. It then checks the rest
of the elements one at a time and if any of them are larger than the current highest
value stored in M , then M is updated to hold that new high value. The variable J
is also updated to hold the index of that new highest value. After all elements have
been examined, M will hold the highest element value of all the elements in the
array, and J will hold the index where that value was found. A flowchart describing
this algorithm is shown in figure 10.6 on page 84. This flowchart uses a one-based
array, so we will need to use an OPTION BASE 1 statement in our program.

The subscripts start at 1 in the program shown in figure 10.7 on page 86. This
occurs because of the OPTION BASE 1 on line 80. The DIM(8) on line 90 means
there are 8 elements, with indices ranging from 1 through 8. The argument to
DIM, which must be an unsigned integer value and not a variable or arithmetic
expression, specifies not the size of the array, but the maximum possible subscript
or index that you can use. To know the number of elements in an array, you

84 Chapter 10 Arrays

Start

I ← 1

I ≤ 8 False

True

Output
“VALUE OF ELEMENT” I “IS”

Input A(I)

I ← I + 1

J ← 1

M ← A(J)

I ← 2

I ≤ 8 False

True

A

A(I) > M
True

False

J ← I

M ← A(J)

I ← I + 1

A

Output
“THE MAXIMUM ELEMENT VALUE IS:” M

Output
“AND WAS FOUND IN SLOT:” J

Stop

Figure 10.6: Find Maximum Value Flowchart

10.2 Maximum Value 85

must know both the value specified in the DIM statement and whether the array is
zero-based or one-based.

The corresponding ECMA-55 Minimal BASIC program implementing the flowchart
shown in figure 10.6 on page 84 is shown in figure 10.7 on page 86. This program
uses the OPTION BASE 1 statement on line 80 to tell BASIC that one-based arrays
will be used. For programs that expect a zero-based arrays, you can use OPTION
BASE 0 instead. It is not possible to mix both zero-based and one-based arrays
in a single program. The OPTION BASE statement must occur before any DIM
statements, and will determine the minimum index for all arrays in the program.
Only 0 or 1 can be specified as arguments to OPTION BASE. You cannot have
multiple OPTION BASE statements in the same program. The ECMA-55 Minimal
BASIC standard specifies zero-based arrays are the default, but you should always
include an OPTION BASE statement in any program that uses arrays to ensure your
program will work correctly with any language translator (compiler or interpreter).
Even when it is not absolutely required, you should still use an OPTION BASE
statement because it documents what behavior the program expects.

The array data is loaded on lines 100 through 140. Then the first guesses for J
and M are made on lines 160 and 170. The second loop stars on index 2 since
A(1) was already used to initialize M . The second loop uses lines 180 through 220
and will find the maximum value and the location of that maximum value. Note
that the condition on line 190 is opposite of that shown in the flowchart. This
is because we have to jump over the code on lines 200 and 210 when A(I) is not
larger than the current maximum value stored in M .

A sample run of the program from figure 10.7 on page 86 is shown in figure 10.8
on page 86. What happens if two elements tie for the maximum value? Will J be
the index of the first occurrence or the second? You should type in and run the
program and investigate these questions until you learn not only what the answer
is, but why the algorithm works the way it does.

86 Chapter 10 Arrays

10 REM FIND MAXIMUM VALUE IN A LIST
20 REM
30 REM A IS THE ARRAY OF 8 ELEMENTS
40 REM I IS AN INDEX FOR THE LOOP
50 REM M IS THE MAXIMUM VALUE OF ALL ELEMENTS
60 REM J IS THE INDEX WHERE THE MAXIMUM WAS FOUND
70 REM
80 OPTION BASE 1
90 DIM A(8)
100 REM GET THE ELEMENT VALUES
110 FOR I=1 TO 8
120 PRINT "VALUE OF ELEMENT";I;"IS ";
130 INPUT A(I)
140 NEXT I
150 REM FIND THE MAXIMUM VALUE
160 LET J=1
170 LET M=A(J)
180 FOR I=2 TO 8
190 IF A(I)<=M THEN 220
200 LET J=I
210 LET M=A(J)
220 NEXT I
230 PRINT "THE MAXIMUM ELEMENT VALUE IS:";M
240 PRINT "AND WAS FOUND IN SLOT:";J
250 END

Figure 10.7: Find Maximum Value

VALUE OF ELEMENT 1 IS ? -99
VALUE OF ELEMENT 2 IS ? 99
VALUE OF ELEMENT 3 IS ? 50
VALUE OF ELEMENT 4 IS ? 10
VALUE OF ELEMENT 5 IS ? -10
VALUE OF ELEMENT 6 IS ? 30
VALUE OF ELEMENT 7 IS ? 300
VALUE OF ELEMENT 8 IS ? 299
THE MAXIMUM ELEMENT VALUE IS: 300
AND WAS FOUND IN SLOT: 7

Figure 10.8: Find Maximum Value Program Output

10.3 More About Subscripts 87

The two example programs shown in this chapter are typical array processing
programs. The program to compute the average uses all elements in a summation
and then uses that as part of a formula. The program to find the maximum value
inspects each element for some characteristic until it finds the required value.

10.3 More About Subscripts

Earlier it was stated that array subscripts must be numeric values. Since every
numeric expression in ECMA-55 Minimal BASIC is a floating point value, you
may be curious about what happens if you use a non-integral subscript value. The
standard specifies that the expressions are rounded to the nearest integer, and the
resulting integer value is used. However, it is bad style to use non-integral values,
and it can make the program very, very hard to debug. This also means that
several different subscript values can map to the same element if you use subscript
values that are not integers. For instance, A(1.1), A(1.2), and A(1.3.14159) will
all use A(1)’s element. A(1.5), A(1.9), A(1.91), and A(2.01) will all use A(2)’s
element.

Consider the program and its output shown in figure 10.9. Two non-intuitive things
have occurred:

1. The loop body was only executed twice, not three times as expected.

2. A(1.1) is not 1.1 as expected.

$cat DEMO.BAS
10 OPTION BASE 0
20 DIM A(4)
30 FOR X=1.1 TO 1.3 STEP .1
40 LET A(X)=X
50 NEXT X
60 FOR X=1.1 TO 1.3 STEP .1
70 PRINT "A(";X;")=";A(X)
80 NEXT X
90 END
$./BASICC DEMO.BAS
$./DEMO
A(1.1)= 1.2
A(1.2)= 1.2
$

Figure 10.9: Use of non-integral subscripts

The loop only executes twice because of the imprecision of floating point math.
First, 1.1 cannot exactly be represented in IEEE-754 floating point. Then the code
is adding .1, which is not exactly representable in IEEE-754 floating point either.

88 Chapter 10 Arrays

This addition occurs multiple times and involves a bit of error each time, and those
errors are cumulative. The result of adding .1 to 1.1, and then adding .1 to that
result, yields something that is not quite less than or equal to 1.3, so the third
iteration does not occur. This is counter-intuitive since humans use base 10 math
and these numbers are easy to work with. The IEEE-754 doubles are powers of
2, not powers of 10, and cannot exactly represent numbers that are not powers of
2. Usually the errors are small enough we do not notice, but in this case we get
unexpected behavior. This is one reason why testing programs before using them
for real work is essential.

Understanding the array output is a bit easier. Int the first iteration of the loop
body, A(1.1) is assigned 1.1. That really stores 1.1 in A(1). In the second iteration
of the loop body, A(1.2) is assigned 1.2. That really stores 1.2 in A(1). Yes, that is
the same A(1) used earlier, so the 1.1 that was stored there is overwritten with
the new value 1.2. In the second loop both print statements really print A(1), so
they print the same A(1) value. Since the last value written to A(1) was 1.2, both
lines print a value of 1.2 and neither shows the 1.1 value. Adding lines to show the
values of X might help. Using BASICCW, which gives wide output, we can see what
happened easily in figure 10.10.

$cat DEMO.BAS
10 OPTION BASE 0
20 DIM A(4)
30 FOR X=1.1 TO 1.3 STEP .1
35 PRINT X
40 LET A(X)=X
50 NEXT X
55 PRINT X
60 FOR X=1.1 TO 1.3 STEP .1
70 PRINT "A(";X;")=";A(X)
80 NEXT X
90 END
$./BASICCW DEMO.BAS
$./DEMO
1.1
1.2000000000000002
1.3000000000000003

A(1.1)= 1.2000000000000002
A(1.2000000000000002)= 1.2000000000000002
$

Figure 10.10: Use of non-integral subscripts2

After two iterations, X is 1.3000000000000003, which is not less than or equal to
1.3, so the third iteration never occurs. This program is wrong and will never work
the way it is written, even though logically it is clear. How can we write a program
that does what we intended? Several approaches are possible. I show a simple one
in Figure 10.11 on page 89. This programs gives the output that was intended, but
using only integral loop and array indices.

10.3 More About Subscripts 89

$cat DEMO2.BAS
10 OPTION BASE 0
20 DIM A(2)
30 FOR X=11 TO 13 STEP 1
40 LET A(X-11)=X/10
50 NEXT X
60 FOR X=11 TO 13 STEP 1
70 PRINT "LOGICAL A(";X/10;")=";A(X-11)
80 NEXT X
90 END
$./BASICC DEMO2.BAS
$./DEMO2
LOGICAL A(1.1)= 1.1
LOGICAL A(1.2)= 1.2
LOGICAL A(1.3)= 1.3
$

Figure 10.11: Using logical non-integral subscripts

90 Chapter 10 Arrays

Exercises

1. Modify the flowchart shown in figure 10.6 on page 84 to find the minimum
value in an array.

2. Modify the program shown in figure 10.7 on page 86 to match the flowchart
in the previous question and test it to verify it really does find the minimum
value in an array.

Chapter 11

Including Data Within A Program

Often a program needs some constant data included within the program itself.
This is especially true for ECMA-55 Minimal BASIC since it has no capability for
reading files. Fortunately BASIC has special support for including data within
the program using the DATA and READ statements. The DATA statement is used
to include the actual data within the program. A DATA statement begins with a
line number like all BASIC statements. It uses the DATA keyword followed by a
comma-delimited list of one or more data items. The DATA statement can occur
anywhere within the program, but traditionally most people include them at the
end of the program just before the END statement. Including the data is easy, but
how do you access it?

BASIC includes a special READ statement for this. The syntax of the READ statement
is similar to the INPUT statement you already know. After the initial line number,
the READ keyword is used, and this is followed by a list of zero or more comma-
delimited variable names to load with data. The variables are loaded in left-to-right
order as you would expect. The READ statement behavior is very similar to the
INPUT statement behavior, but instead of getting data from the keyboard, it
gets data from the built-in data specified in the DATA statements of the program.
Logically, the program is scanned when you start to run it in order to find all of
the DATA statements. Each one is processed in turn and all of the data items on
that line are appended to the data items list. If a program has no DATA statements,
then the data items list is empty. If the program has many data statements, all
that data is read in order to create one large list of data items.

11.1 A simple example using READ and DATA

The first READ statement will begin reading from the beginning of the data item
list. The program will remember what has been read, and on the next READ new
data from the list will be read. If a READ statement is used but no more data items
exist on the list to read, a fatal error will occur, so the programmer must ensure
that the program never reads more data items than are available. The example
program shown in figure 11.2 on page 93 should help you understand how the READ

91

92 Chapter 11 Including Data Within A Program

Start

Read N

I ← 1

I ≤ N
False

True

Read A(I)

I ← I + 1

I ← 1

I ≤ N
False

True

Output
“A(” I “)=” A(I)

I ← I + 1

Stop

Figure 11.1: Load Array With Data Flowchart

and DATA statements work together to allow the program to include data within
itself. To help you understand the program, a flowchart for the program is provided
in figure 11.1.

After examining the sample program shown in figure 11.2 on page 93, you should
type it in and run it. The output will be as shown in figure 11.3 on page 93. The
DATA statements are on lines 230, 250 and 260, and all of their data items are
merged into one long list of data items. Line 130 reads the first data item into
the variable N, and that value is the number of data items available. Your array A
must have room for all of the elements. Since this sample uses 15 data items and
the array A has 31 elements, the data will fit. The READ on line 150 is executed 15
times, once for each of the items in the data list after the initial count value which
was already read into the variable N on line 130. As you can see in the program
output, all of the data items were indeed added to the internal data item list in
the order in which they appeared in the program. By using DATA and READ, it is
possible to include data within your program so that the user does not have to
type it all in from the keyboard. The other alternative would be to add 16 LET
statements, one for each array element, and one for the count variable N. Instead it
is possible to do that with just 4 lines. Another advantage of using READ and DATA
is that if you change the data, you do not have to change the main program logic.
You must be careful to ensure the data item value specified on line 230 matches
the number of data items, and that the specified size of array A is large enough to
contain that many data items.

11.1 A simple example using READ and DATA 93

10 REM DATA STATEMENT EXAMPLE
20 REM WRITTEN BY JOHN GATEWOOD HAM
30 REM LAST MODIFIED 2016/02/23 AT 16:46 ICT
40 REM
50 REM A THIS IS THE ARRAY USED BY THIS PROGRAM
60 REM AND CAN HAVE A MAXIMUM OF 31 ELEMENTS
70 REM WITH SUBSCRIPTS 0 .. 30
80 REM I THIS IS USED AS THE INDEX FOR THE FOR LOOPS
90 REM AND IS ALSO THE SUBSCRIPT USED WITH ARRAY A
100 REM N CONTAINS NUMBER OF ELEMENTS USED IN ARRAY
110 DIM A(30)
120 REM LOAD ARRAY DATA
130 READ N
140 FOR I=1 TO N
150 READ A(I)
160 NEXT I
170 REM DISPLAY ARRAY CONTENTS
180 FOR I=1 TO N
190 PRINT "A(";I;") =";A(I)
200 NEXT I
210 STOP
220 REM NEXT LINE CONTAINS NUMBER OF DATA ITEMS
230 DATA 15
240 REM FOLLOWING LINES CONTAIN DATA FOR ARRAY
250 DATA 9,9,8,8,7,7,6,6,5,5
260 DATA 4,4,3,3,2
270 END

Figure 11.2: READ and DATA example

A(1) = 9
A(2) = 9
A(3) = 8
A(4) = 8
A(5) = 7
A(6) = 7
A(7) = 6
A(8) = 6
A(9) = 5
A(10) = 5
A(11) = 4
A(12) = 4
A(13) = 3
A(14) = 3
A(15) = 2

Figure 11.3: READ and DATA Program Output

94 Chapter 11 Including Data Within A Program

In some programs, especially games, you might want to reset the game. To do that,
you would need to read all the data again. There is a special RESTORE statement
to help you do that. The RESTORE statement will tell the program that no data
has been read yet. After a RESTORE statement, the next READ will read the first
data item value in the program, not the next data item value on the internal list of
item values as it usually would.

11.2 Three ways to read lists of data

In many programs, you will have lists of constant data which you need to read into
variables. There are three common ways to read lists of constant data from DATA
statements in BASIC:

1. Read until a special sentinel value is read.
2. Read the list length as the first data value.
3. Hard-code the list length.

Each style has strengths and weaknesses, and if you look at very many older BASIC
programs, you are almost certainly going to see all of these methods used.

Let’s look at an example program that shows all three common ways to read
constant data from DATA statements. After examining the sample program shown
in figure 11.4 on page 95, you should type it in and run it. The output will be as
shown in figure 11.5 on page 96.

The first style of reading data occurs on lines 80 through 180. This uses a sentinel
value of -999 to mark the end of the data. A sentinel value is a special value
that cannot be present in the set of normal data values, but which does share the
same data type as the normal data values. The second style of reading data occurs
on lines 230 through 350. This reads the number of data values as the first data
item and stores that value in the variable C with the READ statement on line 240.
The third and final style of reading data occurs on lines 450 through 530, and has
the number of items hard-coded in the LET statement on line 450. Some people
would just omit line 450 and instead hard-code the value 4 instead of C in the FOR
statement on line 470. Note well the use of RESTORE on line 360 to reset the data
pointer to prepare for the third phase. This resets the internal data pointer back
to the first element in the first DATA statement on line 550, so the READ on line
480 will begin reading from the first element of DATA in the program.

So when should you use which style? If you are sure the number of elements will
never change, the last style with the hard-coded number of elements is the most
efficient. However, if you decide to change the number of items in your data, you
must check the program logic carefully to update all of the hard-coded list length

11.2 Three ways to read lists of data 95

10 REM DEMONSTRATE READ, DATA, AND RESTORE
20 REM
30 REM IF YOU DO NOT KNOW HOW MANY ITEMS TO READ, YOU NEED TO HAVE
40 REM A SENTINEL VALUE AT THE END OF THE LIST WITH A VALUE THAT
50 REM ABSOLUTELY CANNOT OCCUR IN THE SET OF NORMAL VALUES YOU READ.
60 REM IN THIS CASE, -999 IS THE SENTINEL VALUE.
70 REM
80 LET C=0
90 READ A
100 IF A=(-999) THEN 170
110 IF A>=0 THEN 140
120 PRINT "YOU READ ";A
130 GOTO 150
140 PRINT "YOU READ";A
150 LET C=C+1
160 GOTO 90
170 PRINT "YOU READ";C;"ITEMS"
180 PRINT
190 REM
200 REM SOMETIMES THE LENGTH OF THE LIST IS IN THE DATA ITSELF AS THE
210 REM FIRST ITEM OF THE LIST.
220 REM
230 LET I=0
240 READ C
250 PRINT "YOU SHOULD READ";C;"ITEMS"
260 IF C=0 THEN 350
270 READ A
280 LET C=C-1
290 LET I=I+1
300 IF A>=0 THEN 330
310 PRINT "ITEM #";I;": ";A
320 GOTO 340
330 PRINT "ITEM #";I;":";A
340 GOTO 260
350 PRINT
360 RESTORE
370 REM
380 REM THE RESTORE STATEMENT RESETS THE READ STATEMENT’S LOCATION
390 REM FOR THE NEXT ITEM TO READ BACK TO THE BEGINNING OF THE
400 REM LIST OF ITEMS.
410 REM
420 REM IF YOU KNOW HOW MANY ITEMS TO READ, YOU CAN USE A FOR LOOP.
430 REM IN THIS CASE, WE KNOW THERE ARE C DATA VALUES TO READ.
440 REM
450 LET C=4
460 PRINT "YOU SHOULD READ";C;"ITEMS"
470 FOR I=1 TO C STEP 1
480 READ A
490 IF A>=0 THEN 520
500 PRINT "ITEM #";I;": ";A
510 GOTO 530
520 PRINT "ITEM #";I;":";A
530 NEXT I
540 STOP
550 DATA 1,2,3,-4,-999
560 DATA 4,1,2,3,-4
570 END

Figure 11.4: Example of reading a list of data three different ways

96 Chapter 11 Including Data Within A Program

YOU READ 1
YOU READ 2
YOU READ 3
YOU READ -4
YOU READ 4 ITEMS

YOU SHOULD READ 4 ITEMS
ITEM # 1 : 1
ITEM # 2 : 2
ITEM # 3 : 3
ITEM # 4 : -4

YOU SHOULD READ 4 ITEMS
ITEM # 1 : 1
ITEM # 2 : 2
ITEM # 3 : 3
ITEM # 4 : -4

Figure 11.5: Output of program in figure 11.4

values. If you often quickly add or remove elements, the first style with a sentinel
is easier to use, but it does require that a sentinel value exists which will never be
present in the normal data. The second style is a compromise that allows any value
in the normal data, yet avoids hard-coding any list size in your loop code. It does
require you to manually keep track of the number of data items when you update
your program, but your main program code logic does not need any changes. If
you are not sure which style to use, I recommend the second style with the list
length as the first element of data.

11.2 Three ways to read lists of data 97

Exercises

1. Create a flowchart for the program shown in figure 11.4 on page 95.

2. Modify the program shown in figure 11.2 on page 93 to find and display the
largest value in the array after it has been loaded with data.

3. Add two more data item values to both lists in the program shown in
figure 11.4 on page 95 and verify the program still works correctly.

Chapter 12

Sequential Search

If you have data stored in an array, you often will have a need to find an element
in the array. This is called searching for an element. Many ways exist to search for
elements, but the first one to learn is the simplest, and is called sequential search.
The idea behind the sequential search is quite simple. Once you know the value
you are looking for, look in the first element of the array and see if you find it. If
you found it, you stop and report success. If not, move to the next element and
see if that value matches. Continue this process until you find the value or you
have checked every element in the array. If you have checked every element in the
array and the value was not found, then you can report failure.

12.1 The Algorithm

A step-by-step diagram showing a search for the value 5 in array A with 9 elements
is shown in figure 12.1 on page 100. To move through the array, the index variable
I is used. The first row shows checking the first element, A0, and that element is
shaded. Since the value in that element is 0, not 5, the search has not succeeded
yet. Since there are still more elements in the array, the search will continue by
incrementing the index I and trying the test to check if AI = 5 again. The second
row shows that A1 is 1, not 5, and there are still more elements in the array, so the
search still has not succeeded yet. I is incremented and the search continues. The
third row shows that A2 is 4, not 5, and there are still more elements in the array,
so the search still has not succeeded yet. I is incremented and the search continues.
In fact, the search continues for the values of I from 3 through 7 without success.
On the ninth and final element, A8, the element value is 5, so the search finally
succeeds in the last element. If the search had been for another value, say 9, that
was not in the array, the search would still end after element 8 since when I was
incremented to 9 it would be greater than the maximum subscript 8, but in that
case the search would end with failure.

Sequential search is guaranteed to find the first occurrence of a value in the array
if one exists. However, as the example showed, in the worst case every element
in the array must be checked. This means that sequential search worst case will

99

100 Chapter 12 Sequential Search

0 1 2 3 4 5 6 7 8
I = 0, A0 = X?

0 = 5?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 1, A1 = X?
1 = 5?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 2, A2 = X?
4 = 5?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 3, A3 = X?
4 = 5?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 4, A4 = X?
0 = 5?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 5, A5 = X?
2 = 5?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 6, A6 = X?
7 = 5?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 7, A7 = X?
8 = 5?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 8, A8 = X?
5 = 5?, Yes
Found it!

0 1 4 4 0 2 7 8 5

Figure 12.1: Sequential search for X=5 in array A

need O (n)1 compares for an array with n elements. For small values of n it works
well, but as n grows to larger values, sequential search can be quite slow. The big
advantage of sequential search is that it is simple and easy to remember.

What happens if a search is tried for something that is not in the list? That will
require checking every element, and then after the last element the program must
stop looking and report that the value was not found in the list. As you can see
in figure 12.2 on page 101, where we search for -1 which is not in the list, if the
search is not successful the program still needs to check every element.

What if we search for a value that is in the list but not stored in the last element?
To find out, we will see what happens when we search for the value 4. The value 4

1f(n) = O (g(n)) means that there are positive constants c and k, such that 0 ≤ f(n) ≤ c×g(n)
for all n ≥ k. O (n) is spoken as big-oh of n.

12.1 The Algorithm 101

0 1 2 3 4 5 6 7 8
I = 0, A0 = X?

0 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 1, A1 = X?
1 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 2, A2 = X?
4 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 3, A3 = X?
4 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 4, A4 = X?
0 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 5, A5 = X?
2 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 6, A6 = X?
7 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 7, A7 = X?
8 = −1?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 8, A8 = X?
5 = −1?, No

-1 Not found!
0 1 4 4 0 2 7 8 5

Figure 12.2: Sequential search for X=-1 in array A

0 1 2 3 4 5 6 7 8
I = 0, A0 = X?

0 = 4?, No
Keep looking

0 1 4 4 0 2 7 8 5

I = 1, A1 = X?
1 = 4?, No

Keep looking
0 1 4 4 0 2 7 8 5

I = 2, A2 = X?
4 = 4?, Yes
Found it!

0 1 4 4 0 2 7 8 5

Figure 12.3: Sequential search for X=4 in array A

102 Chapter 12 Sequential Search

is in the list twice, once in element 2 and once in element 3. The computer science
way to express the case when a value occurs more than once is to say the list
contains duplicate values. So this example has duplicate values of 4 in elements 2
and 3. It also has duplicate values of 0 in elements 0 and 4. For sequential search,
the search for a value of 4 would stop when the first matching value occurs, so
when the value stored in element 2 is compared with a search value of 4, the search
would stop and report success. This is shown in figure 12.3 on page 101. Element
3 would not be examined. That is why a sequential search is guaranteed to find
the first occurrence of a value in the array if one exists.

So how can this idea actually be implemented? The first thing to consider is that in
order to search an array for data, first data must be loaded into the array. Loading
data into an array was explained in chapter 11, and that technique will be used
in this chapter. This means a program to implement this search has two distinct
phases: first loading the data, and then searching for that data in the array. These
distinct phases are visible in the flowchart shown in figure 12.4 on page 103.

The flowchart has two lightly shaded areas, one for the load data code and one
for the sequential search code. The code between them is used to get the user to
enter the value for which to search. The code after the sequential search is used to
report the results of the search.

12.1 The Algorithm 103

Start

load
data

sequential
search

I ← 0

I < N
False

True

Read AI

I ← I + 1

Output
“FIND WHAT?”

Input X

F ← 0

I ← 0

I < N
False

True

AI = X

False

True

F ← 1I ← I + 1

F = 1False True

Output
X “NOT FOUND”

Output
X “FOUND IN SLOT” I

Stop

Figure 12.4: Sequential Search Flowchart for N elements

104 Chapter 12 Sequential Search

12.2 Implementation in ECMA-55 Minimal BASIC

The BASIC code that corresponds to the load data box is made of several parts
and is shown in figure 12.5 on page 105. The DIM statement on line 80 creates the
array A with room for 20 elements. The lines 100 through 120 contain the FOR
loop that actually loads the array, and line 290 contains the DATA statement with
the data values that get loaded. This technique is explained in detail in chapter 11.

The BASIC code that corresponds to the sequential search box is on lines 170
through 220. This also uses the same style of pre-test loop implemented with a FOR
statement as the load data code. However, the loop body is different. It contains a
test that checks to see if the current array element AI = X, and if it is the flag F
is set to 1 to indicate that the value was found and then the code exits the loop.
If the test is false, however, we increment I and keep looking. If X is found the
loop exits and F will be 1 and I will be the index where X was found. If X is not
found, the loop will exit when I is 20 and F will be 0.

Lines 240 through 270 report the results of the search, and line 280 causes the
program to terminate using the STOP statement. Unlike the special END statement
which must exist exactly once as the last line of the program, the STOP statement
may be used as many times as you wish in the program. Any time the program
reaches a STOP statement or the END statement, the program will terminate.

12.2 Implementation in ECMA-55 Minimal BASIC 105

10 REM SEQUENTIAL SEARCH DEMO
20 REM
30 REM A IS ARRAY TO HOLD THE DATA ITEMS
40 REM I IS THE LOOP INDEX VARIABLE
50 REM X HOLDS THE VALUE WE SEEK
60 REM F IS A FLAG, 0 MEANS NOT FOUND, 1 MEANS FOUND
70 REM
80 DIM A(19)
90 REM READ DATA INTO ARRAY A
100 FOR I=0 TO 19
110 READ A(I)
120 NEXT I
130 REM GET VALUE FOR WHICH TO SEARCH
140 PRINT "FIND WHAT";
150 INPUT X
160 REM DO SEQUENTIAL SEARCH
170 LET F=0
180 FOR I=0 TO 19
190 IF A(I)<>X THEN 220
200 LET F=1
210 GOTO 240
220 NEXT I
230 REM REPORT RESULTS
240 IF F=1 THEN 270
250 PRINT X;"NOT FOUND"
260 GOTO 280
270 PRINT X;"FOUND IN SLOT";I
280 STOP
290 DATA 21,85,80,14,60,76,87,49,78,81,96,25,17,22,13,91,23,62,5,57
300 END

Figure 12.5: Sequential Search Program

106 Chapter 12 Sequential Search

Exercises

1. What would you need to change in the program if you want to have a list
with 30 elements?

2. Some lists contain duplicate values. Modify the flowchart so that instead of
using F as a Boolean flag, F becomes a count of how many copies of X that
were found. In this case you would report the last copy of X found.

3. Write the ECMA-55 Minimal BASIC program for the flowchart in the previous
question.

4. Continuing with the flowchart in the first question, add a new array B that
will contain all of the indices of X values found. If X is 7 and you found 3
copies, B(0) contains the index of the first copy, B(1) contains the index of
the second copy, and B(2) contains the index of the last copy. You will need
a scalar B0 to remember how many elements in B are used.

5. Write the ECMA-55 Minimal BASIC program for the flowchart in the previous
question.

6. What happens if the list contains duplicate values? Update the flowchart and
then the program to ensure that all values in the list matching the search
value are shown.

Chapter 13

Subroutines

In many programs, you will need to do the same thing many times. We have
already learned one way to do this with pre-test and post-test loops. However,
sometimes we need something more powerful. We want to be able to write some
code to do something that allows us to use that code again and again whenever
we need it, but not necessarily within a loop. The general concept to support
this in computer programming is called the subroutine.1 The ECMA-55 Minimal
BASIC language has support for implementing subroutines that uses two special
statements. The GOSUB statement will tell the program to run a subroutine, and
the RETURN statement will tell the subroutine to exit. Unlike modern languages
that use names for subroutines, ECMA-55 Minimal BASIC uses the line number of
the first line of the subroutine to specify what subroutine to run. This line number
follows the GOSUB keyword in the same style that GOTO uses. When a subroutine
is invoked with the GOSUB keyword, the program will jump to the specified line
number and then run normally until a RETURN statement occurs. When the RETURN
statement executes, it will jump back to the line after the GOSUB statement that
was used to invoke the subroutine. It is an error to use RETURN without using
GOSUB first to enter the subroutine. Subroutines can call other subroutines, and the
ECMA-55 Minimal BASIC runtime will remember the details so that the RETURN
statements work correctly.2

To use subroutines in a flowchart, we need to learn some new symbols. When a
program runs a subroutine, there are some traditional computer science names for
that. One verb used for this action is call, and people will say they call a subroutine.
Another verb used is invoke, and people say they will invoke a subroutine. This
book will use the call verb for this concept. The symbol used when you want to
call a subroutine is a rectangle where the left and right sides have double lines, and
is called the predefined process symbol. The start of the subroutine uses terminal
symbols at the beginning and end of the subroutine. The terminal at the end of

1Many languages like C have functions, which are subroutines that return a value. Some, like
Pascal, have procedures, which are subroutines that do not return a value.

2Using line numbers as an entry points and permitting multiple return statements allows
multiple entry and exit points to a subroutine, but doing that is considered bad style by many
programmers since it makes the code more difficult to read and maintain.

107

108 Chapter 13 Subroutines

the subroutine will have the word “Return” inside of it. The terminal at the start
of the subroutine will have some short unique identifier name for the subroutine.
Like many programming concepts, the subroutine idea is harder to describe in
words than in a picture, so please examine the flowchart shown in figure 13.1 and
figure 13.2 on page 109.

Start

N ← 20

call
Load_A

Output
“FIND WHAT?”

Input X

call
Search_A

F = 1

False

True Output
“NOT FOUND”

Output
X “FOUND IN SLOT” I

Output
“TRY AGAIN?”

Input A$

A$ = “Y ′′

False

True

A$ = “N ′′

False

True

Output
“ANSWER MUST BE Y OR N!”

Stop

Figure 13.1: Subroutine Example Flowchart (1 of 2)

The main program logic is shown in figure 13.1 and it uses the new predefined
process symbol twice. The first time it is used to call the “Load_A” subroutine,
and the second time it is used to call the “Search_A” subroutine. Those two
subroutines are shown in figure 13.2 on page 109. The structure of this flowchart is

Chapter 13 Subroutines 109

easier to read, since the main logic hides the details of the array load and sequential
search. You could recycle the main program logic but change how data is loaded
by just replacing the “Load_A” subroutine. You can change to a different kind
of search by just replacing the “Search_A” routine. All good large programs use
subroutines to make the structure of the program more modular.

Load_A

I ← 0

I < N
False

True
Read AI

I ← I + 1

Return

Search_A

F ← 0

I ← 0

I < N
False

True

AI = X
True

False
F ← 1

I ← I + 1

Return

Figure 13.2: Subroutine Example Flowchart (2 of 2)

Now it is time to examine the ECMA-55 Minimal BASIC source code in figure 13.3
on page 110 which implements the flowcharts. The BASIC code for the main
program logic is on lines 10 through 340. The in-program data is on line 630. The
BASIC code for the “Load_A” subroutine is on lines 380 through 450. The BASIC
code for the “Search_A” subroutine is on lines 470 through 600. Note that the
STOP statement on line 340 is needed to ensure the main program stops instead of
accidentally falling through to the subroutines. You could use GOTO 650 instead
of STOP, but then if you ever change the program making it longer, by adding
more data for instance, then you would have to remember to update that GOTO
line number. By using STOP, no line number is used so it always works even if the
line numbers change, and this is why it is always best to use a STOP statement at
the end of your main program logic if your program has any subroutines.

One other new technique is used in this sample program on line 90. That line
specifies OPTION BASE 0 so that we get zero-based arrays. However, those are the
default anyway, so why include line 90? This is done in case the program is ported
to run on another dialect of BASIC. BASIC has hundreds of dialects, each slightly
different. This is very much like English. Most people born in Australia, England,
Scotland, Ireland, Canada, and the USA speak English, but they speak different

110 Chapter 13 Subroutines

10 REM SEQUENTIAL SEARCH DEMO WITH SUBROUTINES
20 REM
30 REM A IS ARRAY TO HOLD THE DATA ITEMS
40 REM I IS THE LOOP INDEX VARIABLE
50 REM X HOLDS THE VALUE WE SEEK
60 REM F IS A FLAG, 0 MEANS NOT FOUND, 1 MEANS FOUND
70 REM N IS NUMBER OF ELEMENTS IN A
80 REM
90 OPTION BASE 0
100 DIM A(19)
110 REM
120 REM **************** MAIN *******************
130 REM
140 REM READ DATA INTO ARRAY A
150 LET N=20
160 GOSUB 380
170 REM GET VALUE FOR WHICH TO SEARCH
180 PRINT "FIND WHAT";
190 INPUT X
200 REM DO SEQUENTIAL SEARCH
210 GOSUB 470
220 REM REPORT RESULTS
230 IF F=1 THEN 260
240 PRINT X;"NOT FOUND"
250 GOTO 270
260 PRINT X;"FOUND IN SLOT";I
270 REM TRY AGAIN?
280 PRINT "TRY AGAIN";
290 INPUT A$
300 IF A$="Y" THEN 170
310 IF A$="N" THEN 340
320 PRINT "ANSWER MUST BE Y OR N!"
330 GOTO 280
340 STOP
350 REM
360 REM **************** SUBROUTINES *******************
370 REM
380 REM SUBROUTINE TO LOAD DATA FROM DATA STATEMENTS INTO A
390 REM INPUT N NUMBER OF ELEMENTS
400 REM OUTPUT A(), ARRAY WITH N ELEMENTS
410 REM
420 FOR I=0 TO N-1
430 READ A(I)
440 NEXT I
450 RETURN
460 REM
470 REM SUBROUTINE TO DO SEQUENTIAL SEARCH FOR X IN A
480 REM INPUT N NUMBER OF ELEMENTS
490 REM INPUT A(), ARRAY WITH N ELEMENTS
500 REM INPUT X, ELEMENT VALUE TO SEARCH FOR
510 REM OUTPUT F, 0 MEANS NOT FOUND, F=1 MEANS FOUND
520 REM OUTPUT I, INDEX OF X IN A() IF F=1, N OTHERWISE
530 REM
540 LET F=0
550 FOR I=0 TO N-1
560 IF A(I)<>X THEN 590
570 LET F=1
580 GOTO 600
590 NEXT I
600 RETURN
610 REM
620 REM ******************* DATA ***********************
630 DATA 21,85,80,14,60,76,87,49,78,81,96,25,17,22,13,91,23,62,5,57
640 REM ******************* END ************************
650 END

Figure 13.3: Subroutine Example Program

Chapter 13 Subroutines 111

dialects of English. For example, a biscuit means a kind of bread product to people
from the USA but it is a type of a cookie to people in England. So some BASIC
implementations are zero-based, but not all of them are. Adding the OPTION BASE
0 explicitly tells BASIC we expect to use zero-based arrays. When a program is
modified to run in a different environment, such as on another operating system,
this is called porting the program. If you need to update a program for a different
dialect of the language, for instance updating an old K&R C program to use C89,
this is also porting the code. So by using the OPTION BASE 0 statement, we make
the code more portable (easier to port) since it lets anyone who reads the source
code know we expect zero-based arrays and if their BASIC uses one-based arrays
and does not support the OPTION BASE 0 statement, then they will need to modify
the program and check all the subscripts very carefully.

112 Chapter 13 Subroutines

Exercises

1. Rewrite the flowchart in figure 11.1 on page 92 using the ideas from this
chapter so that the array load and array print loops are each in their own
subroutines.

2. Write a BASIC program to implement the flowchart you created as an answer
to the previous question. You might want to look at figure 11.2 on page 93
for inspiration.

Chapter 14

Bubble Sort

This chapter describes a simple and effective sorting technique for small, integer-
indexed arrays like those used in ECMA-55 Minimal BASIC. This sort will put all
the data values into ascending order, with the lowest value first and the highest
value last. The sorting technique is called the bubble sort since the larger values
bubble up to the top of the array, where the top of the array is the end of the array
with the highest index. The way this sort works is by moving the largest remaining
element to the end of the list every iteration of the inner loop by comparing adjacent
values and swapping values when they are out of place, moving from index 0 to
index N − 1, for an array with N elements. After each time through the array, one
more element is moved into the correct position. Of course, if we are lucky and the
element was already in the correct position then it does not need to actually be
moved. To be certain all elements are in the correct position at the end of the sort,
the array data must be processed N − 1 times.

14.1 The Algorithm

The best way to learn how the algorithm works is by examining a series of diagrams.
The example that follows uses a zero-based array A with five elements which
initially are in reverse order, which is the worst case for an ascending order bubble
sort. Each time the outer loop iterates, the inner loop will run to ensure the largest
element remaining is moved into place. For the first iteration of the inner loop
during the first iteration of the outer loop, this means that the largest element in
the array will be moved into the last element of the array. The sort begins with
the array values already loaded into array A and the variable N initialized to the
number of elements, 5.

0 1 2 3 4

I = 0 5 4 3 2 1

Is AI > AI+1? Is A0 > A1? Is 5 > 4? Yes so the values are in the wrong order.

113

114 Chapter 14 Bubble Sort

0 1 2 3 4

I = 0 4 5 3 2 1

So the program must swap the values stored in A0 and A1 as shown. Then I is
incremented and the next pair of values must be examined.

0 1 2 3 4

I = 1 4 5 3 2 1

Is AI > AI+1? Is A1 > A2? Is 5 > 3? Yes the values are in the wrong order.

0 1 2 3 4

I = 1 4 3 5 2 1

So the program must swap the values stored in A1 and A2 as shown. Then I is
incremented and the next pair of values must be examined.

0 1 2 3 4

I = 2 4 3 5 2 1

Is AI > AI+1? Is A2 > A3? Is 5 > 2? Yes the values are in the wrong order.

0 1 2 3 4

I = 2 4 3 2 5 1

So the program must swap the values stored in A2 and A3 as shown. Then I is
incremented and the next pair of values must be examined.

0 1 2 3 4

I = 3 4 3 2 5 1

Is AI > AI+1? Is A3 > A4? Is 5 > 1? Yes the values are in the wrong order.

14.1 The Algorithm 115

0 1 2 3 4

I = 3 4 3 2 1 5

So the program must swap the values stored in A3 and A4 as shown.

0 1 2 3 4

I = 4 4 3 2 1 5

Value 5 is the largest value and will never move again now that it has been moved
into its proper place in the array, that is, in the last element A4.

That completes the inner loop for the first iteration of the outer loop. The second
iteration of the outer loop will move 4 into position, yielding the following:

0 1 2 3 4

I = 4 3 2 1 4 5

The third iteration of the outer loop will move 3 into position, yielding the following:

0 1 2 3 4

I = 4 2 1 3 4 5

The fourth and final iteration of the outer loop will move 2 into position, and as a
by-product the 1 will fall into place too, yielding the following:

0 1 2 3 4

I = 4 1 2 3 4 5

One complete iteration of the inner loop moved largest value, 5, into the last
element of the array, A4, and it also reduced the number of elements that need to
be examined in the future by one. The next inner loop only needed to examine the
first four elements. The inner loop for the second iteration moves the 4 value into
the fourth element, A3. Each iteration of the outer loop moves one more element
into its final position and reduces the number of elements the inner loop must
examine by one. The last outer loop iteration puts the second element into place,
and the first element is then in the correct location as a by-product of that. After

116 Chapter 14 Bubble Sort

the outer loop has caused the inner loop to run N − 1 times, all elements will have
been forced into the correct places in the array. In this example, that is 5− 1 = 4
times.

Since there are two loops with the outer loop needing n − 1 iterations and the
inner loop in the worst case needing to examine n− 1 elements, that yields a high
estimate of O ((n− 1)(n− 1)), or O (n2 − 2n + 1) for the bubble sort algorithm.
The actual number of iterations for the inner loop will keep shrinking as more and
more elements are put in place at the end of the array and the number of remaining
elements that must be sorted in the next pass decreases. Anyway, the n2 term
dominates, so this is called an O (n2) algorithm in the number of compares and
swaps in the worst case.

As coded, the average case performance is equal to the worst case. However, the
bubble sort is simple to code and simple to remember, and on modern hardware
the performance is adequate for short lists of up to 100 scalars. As n increases, the
runtime increases quadratically, making this algorithm bad for sorting large lists.

How can we use this algorithm in our programs? Well, first a flowchart must be
created that shows the step-by-step details of how the algorithm works. A suitable
flowchart is provided in figure 14.1 on page 117.

14.1 The Algorithm 117

Bubble sort

I = N − 1

I < 1
True

False

Return

J = 0

J > I − 1

False

True
I = I − 1

AJ ≤ AJ+1
True

False
swap
values

T = AJ

AJ = AJ+1

AJ+1 = T

J = J + 1

inner loop

Figure 14.1: Bubble sort flowchart for N elements

118 Chapter 14 Bubble Sort

14.2 Implementation in ECMA-55 Minimal BASIC

So how can this algorithm be implemented in ECMA-55 Minimal BASIC? The
flowchart only shows the actual sorting algorithm, since previous chapters have
shown several ways to load and display the data stored in an array. A program
which loads random data values into an array, then displays the unsorted list,
then sorts the values, and finally displays the sorted list is shown in figure 14.2 on
page 119.

The actual bubble sort occurs in the subroutine that begins on line 260. For
elements which are determined to be out of order by the test on line 350, the swap
occurs on lines 360 to 380. The inner loop on lines 340 to 390 will ensure the
largest value in the unsorted part of the array is in the correct position during
each iteration. The outer countdown loop is used to ensure both that the inner
loop occurs N − 1 times, and that the inner loop only processes the values in the
unsorted part of the list.

The unsorted part of the list keeps getting shorter by one element upon each
iteration of the outer loop, since the largest value in the unsorted part of the list
moves to the end of the unsorted list. The inner loop executes one less time for
each iteration of the outer loop, because the number of elements remaining in the
unsorted part of the array decreases by one for each iteration of the outer loop.

The subroutine to print the values in the array A is on lines 180 to 250. Notice the
loop upper bound for the FOR loop on line 220 is specified in terms of the variable
N so if the number of elements changes, the loop code does not need to be modified.
This same technique is used for the FOR loops which begin on lines 330, 340, and
470.

The subroutine to populate the array A on lines 420 to 500 could be modified
to read data from DATA statements, but of course in that case it would be more
efficient to just sort the data outside the program and write the DATA statement
with the elements in order and avoid the cost of the sort altogether.

Note that the subroutine beginning on line 510 is used to verify that the sort
worked. If the list is sorted, every element AI ≤ AI+1, for I = 0 to I = N − 2.
N − 2 must be the upper limit since if I was N − 1 the program would need to
compare the element stored at that index with the element stored at the next index
N . There is no element at index N in the array because the array is zero-based.
We know it is zero-based because of the OPTION BASE 0 on line 30.

Notice the overall structure of the program puts the main program code at the
beginning, and ends it with a STOP statement on line 170. All of the subroutines
occur after that line, and the source code ends with the required END statement on
line 620. Also, because the code is non-obvious in places, many REM statements
are used to help document the program’s source code.

14.2 Implementation in ECMA-55 Minimal BASIC 119

10 REM BUBBLE SORT DEMO PROGRAM
20 RANDOMIZE
30 OPTION BASE 0
40 DIM A(4)
50 LET N=5
60 REM LOAD RANDOM DATA
70 GOSUB 420
80 PRINT "LIST BEFORE SORT"
90 GOSUB 180
100 REM SORT LIST
110 GOSUB 260
120 PRINT "LIST AFTER SORT"
130 GOSUB 180
140 REM VERIFY LIST IS SORTED
150 GOSUB 510
160 PRINT "PASS"
170 STOP
180 REM ***
190 REM SUBROUTINE TO DISPLAY ARRAY A ELEMENTS
200 REM N IS NUMBER OF ELEMENTS IN ARRAY A
210 REM I IS LOOP INDEX
220 FOR I=0 TO N-1
230 PRINT "A(";I;")=";A(I)
240 NEXT I
250 RETURN
260 REM ***
270 REM SUBROUTINE TO BUBBLE SORT ARRAY A ELEMENTS
280 REM INTO ASCENDING ORDER
290 REM N IS NUMBER OF ELEMENTS IN ARRAY A
300 REM I AND J ARE LOOP INDICES
310 REM T IS A TEMPORARY VARIABLE USED FOR SWAPPING ELEMENTS
320 REM
330 FOR I=N-1 TO 1 STEP -1
340 FOR J=0 TO I-1
350 IF A(J)<=A(J+1) THEN 390
360 LET T=A(J)
370 LET A(J)=A(J+1)
380 LET A(J+1)=T
390 NEXT J
400 NEXT I
410 RETURN
420 REM ***
430 REM SUBROUTINE TO FILL ARRAY A WITH RANDOM
440 REM POSITIVE INTEGER VALUES
450 REM N IS NUMBER OF ELEMENTS IN ARRAY A
460 REM I IS LOOP INDEX
470 FOR I=0 TO N-1
480 LET A(I)=INT(RND*100)
490 NEXT I
500 RETURN
510 REM ***
520 REM SUBROUTINE TO VERIFY ARRAY IS SORTED
530 REM N IS NUMBER OF ELEMENTS IN ARRAY A
540 REM I IS LOOP INDEX
550 FOR I=0 TO N-2
560 IF A(I)>A(I+1) THEN 590
570 NEXT I
580 RETURN
590 PRINT "FAIL: ARRAY NOT SORTED CORRECTLY"
600 GOSUB 180
610 REM INTENTIONALLY FALL THROUGH TO END PROGRAM
620 END

Figure 14.2: Bubble sort program

120 Chapter 14 Bubble Sort

Exercises

1. Some people have implemented the bubble sort algorithm in BASIC with
code like this:

330 FOR I=1 TO N
340 FOR J=0 TO N-2
350 IF A(J)<=A(J+1) THEN 390
360 LET T=A(J)
370 LET A(J)=A(J+1)
380 LET A(J+1)=T
390 NEXT J
400 NEXT I

Why is this version of the code slower in the average case than the code
presented in this chapter?

2. What happens when we use the sort on lines 330 through 400 from the
program shown in figure 14.2 on page 119 to sort a list that is already sorted?
Improve the code so that once the list is already sorted, the sort subroutine
jumps to the RETURN statement.

3. The bubble sort algorithm can be modified so that it is a descending sort
instead of an ascending sort as shown in this chapter. Update the program
from the previous question so that it performs a descending sort.

Chapter 15

Binary Search

This chapter describes an effective searching technique called binary search for use
with data values stored contiguously in sorted, integer-indexed arrays. This search
will find any value in the array, or verify no such value exists in the array. For
searching a large number of data values, binary search works much more quickly
than the sequential search described in chapter 12. To use this algorithm on an
unsorted list stored in an integer indexed array, the array must be sorted first. One
simple way to sort arrays is the bubble sort described in chapter 14. Since there is
a significant cost to sorting an array, the binary search should only be used if the
array will be searched many times. If you will only search an unsorted array once,
a sequential search is actually faster since the runtime cost of the sort is eliminated.

Consider a sorted list of 8 elements stored in a one-dimensional, integer-indexed,
zero-based array called A. This array can be represented by the following diagram:

0 1 2 3 4 5 6 7

Array A 1 7 13 22 23 28 29 37

If we know nothing about the data except that it is sorted, when we begin the
search we would naturally choose the middle element. How can this middle element
be found? Create a variable to contain the lowest element index L, a variable H to
contain the highest element index, and finally a variable M to contain the middle
element index. The formula1 to find the value of M from H and L is

M = L +
⌊︃

H − L

2

⌋︃
When the algorithm starts, L = 0 and H = 7. The formula produces 3 for the value
of M. If AM is the value we seek, then our search has completed successfully. If
AM is not the value we seek, then since the list is sorted, it must either be greater
than or less than the value we seek. If AM is greater than the value we seek, then
all values in AX where X ≥M will be greater than the value we seek, so we can

1Remember, ⌊x⌋ is the math floor(x) function we first used in chapter 7.

121

122 Chapter 15 Binary Search

ignore the part of the list where indices are greater than or equal to M. In other
words, we can say H = M − 1. On the other hand, if AM is less than the value
we seek, then all values in AX where X ≤M will be less than the value we seek,
so we can ignore the part of the list where indices are less than or equal to M. In
other words, we can say L = M + 1. So in the case where AM does not contain the
element we seek, at least we can cut down our search by removing approximately
half of the elements from our future searches. We can repeat this process, always
looking at the middle element of the remaining list, until AM is the value we seek,
or the AM is not the value we seek and the length of the list, (H − L), is one.

While the preceding paragraph is accurate, it may be confusing to some readers.
Going through some binary searches step-by-step with diagrams will illustrate how
the algorithm works.

15.1 Binary Search Example 1

In this first example, the value we seek is 7. Initially, H = 7 and L = 0.

M = L +
⌊︃

H − L

2

⌋︃
= 0 +

⌊︃7− 0
2

⌋︃
= ⌊3.5⌋ = 3

The formula for M yields the value 3. The following diagram shows that the index
M partitions the list into three sublists, a left sublist with all elements having
values less than or equal to AM , the list with just one element M in the middle,
and a right sublist with all elements having values greater than or equal to AM .

L M H

0 1 2 3 4 5 6 7

Array A 1 7 13 22 23 28 29 37

left sublist right sublist

The first thing to check is whether AM holds the value X we seek. A3 holds the
value 22, not 7, so the search is not successful yet. Since the array values are in
ascending order, and we know there were no duplicates in the list, obviously if the
value is in the array, it must be in either the left or the right sublist. When the
value in AM is compared with the value in X, we learn that 22 is greater than 7,
so if the value is in the array, it must be in the left sublist. It cannot be in the
right sublist since everything in that list must be greater than or equal to the value
in AM . This means that H needs to be changed to point to the last value in the
left sublist, which is M − 1. Then we will start again using the new smaller list.

15.2 Binary Search Example 2 123

L M H

0 1 2

Array A 1 7 13

left
sublist

right
sublist

The formula for M yields the value 1. The next thing to check is whether or not
AM holds the value in X that we seek. In this case A1 does hold the value 7, so
the search has been successful.

15.2 Binary Search Example 2

In this example, the value we seek is 3. The formula for M yields the value 3. The
following diagram shows that the index M partitions the list into three sublists, a
left sublist with all elements having values less than or equal to AM , the list with
just one element M in the middle, and a right sublist with all elements having
values greater than or equal to AM .

L M H

0 1 2 3 4 5 6 7

Array A 1 7 13 22 23 28 29 37

left sublist right sublist

The first thing to check is whether AM holds the value X we seek. A3 holds the
value 22, not 3, so the search is not successful yet. Since the array values are in
ascending order, and we know there were no duplicates in the list, obviously if the
value is in the array, it must be in either the left or the right sublist. When the
value in AM is compared with the value in X, we learn that 22 is greater than 3,
so if the value is in the array, it must be in the left sublist. It cannot be in the
right sublist since everything in that list must be greater than or equal to the value
in AM . This means that H needs to be changed to point to the last value in the
left sublist, which is M − 1. Then we will start again using the new smaller list.

124 Chapter 15 Binary Search

L M H

0 1 2

Array A 1 7 13

left
sublist

right
sublist

The formula for M yields the value 1. The next thing to check is whether or not
AM holds the value in X that we seek. A1 holds the value 7, not 3, so the search
is not successful yet. When the value in AM is compared with the value in X, we
learn that 7 is greater than 3, so if the value is in the array, it must be in the left
sublist. This means that H needs to be changed to point to the last value in the
left sublist, which is M − 1. Then we will start again using the new smaller list.

L M H

0

Array A 1

The formula for M yields the value 0. The next thing to check is whether or not
AM holds the value in X that we seek. A0 holds the value 1, not 3, so the search
is not successful yet. When the value in AM is compared with the value in X, we
learn that 1 is less than 3, so if the value is in the array, it must be greater than or
equal to the value in AM . This means that L needs to be changed to point to the
first value in the right sublist, which is M + 1. The picture makes it obvious that
in this case that both the left and right sublists are empty. At this point L = 1 and
H = 0. When L is greater H, that means the list has no elements. Now we know
that 3 is not in the list, so the search was not successful. The algorithm worked,
but the value sought was not in the array, so the search was not successful.

15.3 Binary Search Example 3

In this example, the value we seek is 37. The formula for M yields the value 3. The
following diagram shows that the index M partitions the list into three sublists, a
left sublist with all elements having values less than or equal to AM , the list with
just one element M in the middle, and a right sublist with all elements having
values greater than or equal to AM .

15.3 Binary Search Example 3 125

L M H

0 1 2 3 4 5 6 7

Array A 1 7 13 22 23 28 29 37

left sublist right sublist

The first thing to check is whether AM holds the value X we seek. A3 holds the
value 22, not 37, so the search is not successful yet. Since the array values are in
ascending order, and we know there were no duplicates in the list, obviously if the
value is in the array, it must be in either the left or the right sublist. When the
value in AM is compared with the value in X, we learn that 22 is less than 37, so
if the value is in the array, it must be in the right sublist. It cannot be in the
left sublist since everything in that list must be less than or equal to the value in
AM . This means that L needs to be changed to point to the first value in the right
sublist, which is M + 1. Then we will start again using the new smaller list.

L M H

4 5 6 7

Array A 23 28 29 37

left
sublist

right sublist

The formula for M yields the value 5. The next thing to check is whether or not
AM holds the value in X that we seek. A5 holds the value 28, not 37, so the search
is not successful yet. Since the array values are in ascending order, and we know
there were no duplicates in the list, obviously if the value is in the array, it must
be in either the left or the right sublist. When the value in AM is compared with
the value in X, we learn that 28 is less than 37, so if the value is in the array, it
must be in the right sublist. It cannot be in the left sublist since everything in that
list must be less than or equal to the value in AM . This means that L needs to be
changed to point to the first value in the right sublist, which is M + 1. Then we
will start again using the new smaller list.

126 Chapter 15 Binary Search

L M H

6 7

Array A 29 37

right
sublist

The formula for M yields the value 6. The next thing to check is whether or not
AM holds the value in X that we seek. A6 holds the value 29, not 37, so the search
is not successful yet. Since the array values are in ascending order, and we know
there were no duplicates in the list, obviously if the value is in the array, it must
be in either the left or the right sublist. When the value in AM is compared with
the value in X, we learn that 29 is less than 37, so if the value is in the array, it
must be in the right sublist. It cannot be in the left sublist since everything in that
list must be less than or equal to the value in AM . This means that L needs to be
changed to point to the first value in the right sublist, which is M + 1. Then we
will start again using the new smaller list.

L M H

7

Array A 37

The formula for M yields the value 7. The next thing to check is whether or not
AM holds the value in X that we seek. In this case A7 does hold the value 37, so
the search has been successful.

15.4 Binary Search in Detail

A flowchart showing the logic of an iterative implementation of the binary search
algorithm is shown in figure 15.1 on page 127. The flowchart clearly shows the
looping nature of the algorithm. Each iteration of the loop body will process the
list of values stored in the array once. For the common case when AM ̸= X, three
comparisons must be made. The first is to ensure the list has at least one element,
the second is to see if AM = X, and the third is to determine which sublist to
process on the next iteration of the loop. In the successful case, only the first two
comparisons are made. In the failure case, the first comparison will be true and
the algorithm will terminate.

15.5 Performance of Binary Search 127

Binary search

L = 0

H = N − 1

FOUND = False

H < L
True

False

M = L +
⌊︃

H − L

2

⌋︃

AM = X

True

False

FOUND = True

Return
FOUND

AM > X
True

False

H = M − 1

L = M + 1

Input

N is the number of elements in the array
A is the name of the zero-based,

integer-indexed array; the data inside
the array must be sorted in ascending
order

X is the variable containing the value we
seek

Output

FOUND is the result flag
False means X not found
True means X found

M is the index where X was found (if and
only if FOUND is True)

Local Variables

L is the index of the start of the current
sublist

H is the index of the end of the current
sublist

M is the index of the middle of the current
sublist

Figure 15.1: Flowchart for iterative binary search of array of N elements

15.5 Performance of Binary Search

The version of the binary search used in this chapter requires a maximum of three
comparisons for an iteration of the loop. However, sequential search only requires
two comparisons on each inner loop iteration. For short lists, sequential search will
be faster than binary search. For larger lists, though, binary search works much
better. Consider the case where the number of elements is one million. So how
many iterations of the loop will we need? As shown in figure 15.1, only twenty
iterations is enough to find any value in the list. Even with three comparisons in
every case, that is only sixty comparisons in the worst case, compared to at least
one million comparisons in the worst case for sequential search.

128 Chapter 15 Binary Search

Loop Remaining List Size
Iteration (Number of Elements)

1 1000000
2 500000
3 250000
4 125000
5 62500
6 31250
7 15625
8 7812
9 3906

10 1953
11 976
12 488
13 244
14 122
15 61
16 30
17 15
18 7
19 3
20 1

Table 15.1: How many iterations are required for a large binary search?

Binary search is an O (log2 n) algorithm for the number of loop iterations on average
and in the worst case. A graph comparing various curves including y = x, which
corresponds to O (n) for sequential search, to y = log2 x, which corresponds to
O (log2 n) for binary search, is shown in figure 15.2 on page 129.

Once n is greater than about 10, these graphs show that the behavior of the
different big-O curves is dramatically different. The chart in table 15.2 shows what
happens as the input size n increases for several of the curves.

If n is doubled then it takes Used by
twice as many operations O (n) sequential search
four times as many operations O (n2) bubble sort
one more operation O (log2 n) binary search
no additional operations O (1) access a global variable

Table 15.2: O (n) table

15.5 Performance of Binary Search 129

n

y

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0 1 2 3 4 5 6 7 8 9 10

Number of values

N
um

be
r

of
op

er
at

io
ns

y = n2

quadratic y = n log2 n

y = n
linear

y = log2 n
logarithmic

y = 1
constant time

Figure 15.2: O (n) Graphs

130 Chapter 15 Binary Search

15.6 Implementation in ECMA-55 Minimal BASIC

An ECMA-55 Minimal BASIC implementation of iterative binary search of a zero-
based, integer-indexed array of numbers is shown in figure 15.3 on page 131. This
implementation reads unsorted numeric data into an array in the subroutine on
line 300, and lines 320 through 350 correspond to the flowchart in figure 13.2 on
page 109. Once the data is loaded, the program then uses a bubble sort in the
subroutine on line 400 to put the values into ascending order and lines 410 through
490 correspond to the flowchart in figure 14.1 on page 117. The actual binary
search code is in the subroutine that starts on line 500 and corresponds to the
flowchart in figure 15.1 on page 127. The array variable A defined on line 30 can
hold up to 100 values, leaving room for adding more values later. To use more
values requires modifying the DATA statement on line 40. The first value in that
statement is the number of elements to load, in this case 8. Following that are the
values. If you wanted to load a longer list, you would change that 8 to the number
of elements you want to load, and you would add more DATA statements with the
additional numeric values.

If you consider binary search for a while, you will realize it is related to the high-low
game from chapter 7. The high-low game stated that player one must choose a
random integer value with a range. Player two knows the range. If player two
chooses the midpoint value and is not correct, at least the player knows from the
“high” or “low” response that 1

2 of the list absolutely does NOT contain the value,
and player two can change the range to the new smaller range. This is O (log2 n)
and that is how we can know that for the range 1 to 100, the maximum number of
guesses will be ⌈log2 100⌉, which is approximately, ⌈6.65⌉, which is 7.

15.6 Implementation in ECMA-55 Minimal BASIC 131

10 REM BINARY SEARCH
20 OPTION BASE 0
30 DIM A(99)
40 DATA 8,37,29,28,23,22,13,7,1
50 GOSUB 300
60 GOSUB 400
70 PRINT "WHAT VALUE DO YOU SEEK";
80 INPUT X
90 GOSUB 500
100 IF F=0 THEN 130
110 PRINT A(M);"FOUND AT INDEX";M
120 GOTO 140
130 PRINT X;"NOT FOUND"
140 STOP
300 REM LOAD ARRAY
310 READ N
320 FOR I=0 TO N-1
330 READ A(I)
340 NEXT I
350 RETURN
400 REM BUBBLE SORT
410 FOR I=N-1 TO 1 STEP -1
420 FOR J=0 TO I-1
430 IF A(J)<=A(J+1) THEN 470
440 LET T=A(J)
450 LET A(J)=A(J+1)
460 LET A(J+1)=T
470 NEXT J
480 NEXT I
490 RETURN
500 REM BINARY SEARCH
510 REM N IS NUMBER OF ELEMENTS
520 REM A IS ARRAY OF ELEMENTS
530 REM X IS VALUE WE SEEK
540 REM F IS FLAG, 0 IS NOT FOUND, 1 IS FOUND
550 REM L IS LOWEST INDEX
560 REM H IS HIGHEST INDEX
570 REM M IS MIDDLE INDEX
580 LET L=0
590 LET H=N-1
600 LET F=0
610 IF H<L THEN 730
620 LET M=L+INT((H-L)/2)
630 IF A(M)=X THEN 710
640 IF A(M)>X THEN 680
650 REM A(M) IS TOO SMALL
660 LET L=M+1
670 GOTO 610
680 REM A(M) IS TOO BIG
690 LET H=M-1
700 GOTO 610
710 REM FOUND IT
720 LET F=1
730 RETURN
740 END

Figure 15.3: Binary search program

132 Chapter 15 Binary Search

Exercises

1. What happens when we search for an item with a value less than all values
in the list? For example, using the list shown on page 121, what happens if
we search for the value -3?

2. What happens when the array to be searched contains some duplicate values?
Update the flowchart shown in figure 15.1 on page 127 to report the position
of the first value in the array that matches value X being sought. One way
to do this is to do the normal binary search, then if the value was found at
AM , keep reducing M until M is negative or the value in AM differs from X.
At that point AM+1 is the first occurrence of the value X in the array A.

3. Modify the program shown in figure 15.3 on page 131 so that implements the
search from the flowchart created in the answer to the previous question.

4. Modify the flowchart shown in figure 15.1 on page 127 so that it works with
an array that is sorted in descending order.

5. Modify the program shown in figure 15.3 on page 131 so that implements the
search from the flowchart created in the answer to the previous question.

6. Update the program shown in figure 15.3 on page 131 to use one-based arrays.

Chapter 16

Two-Dimensional Arrays

This chapter introduces two-dimensional, integer-indexed arrays of numbers. A
one-dimensional array is much like a vector, but a two-dimensional array is like
a matrix. In Minimal BASIC, all elements of an array must be numeric, and
an array’s number of dimensions is the number of subscripts used to address an
element. A one-dimensional array element is accessed using a single subscript, but
a two-dimensional array element is accessed using two subscripts. Minimal BASIC,
like C, C++, and Java, uses a row-major layout for matrices. This means that
the first subscript specifies which row to access, and the second subscript specifies
which column to access. Like one-dimensional arrays, two-dimensional arrays are
declared using the DIM statement. For example, DIM Z(5,3) would create the
array Z where the maximum row index is 5 and the maximum column index is
3. For zero-based arrays, that creates a matrix with 6 rows and 4 columns. For
one-based arrays, that creates a matrix with 5 rows and 3 columns. It is always
best to include an OPTION BASE statement before any DIM statements so that there
is no doubt about whether you want zero or one as the minimum index value. The
logical layout of array Z when using zero-based arrays is shown in figure 16.1. The
logical layout of array Z when using one-based arrays is shown in figure 16.2 on
page 134.

0 1 2 3 4 5

0 0 1 2 3 4 5
1 6 7 8 9 10 11
2 12 13 14 15 16 17
3 18 19 20 21 22 23

Figure 16.1: Layout of a zero-based 6x4 matrix

An example program will help you understand how to use two-dimensional arrays.
The example program shown in figure 16.9 on page 141 and figure 16.10 on page 142

133

134 Chapter 16 Two-Dimensional Arrays

1 2 3 4 5

1 0 1 2 3 4
2 5 6 7 8 9
3 10 11 12 13 14

Figure 16.2: Layout of a one-based 5x3 matrix

Start

call
load_data

call
run_menu

Stop

load_data

Read R

X ← 0

X > R− 1Return

C ← 0

C > 2 X ← X + 1

Read AX,C

C ← C + 1

False

True

False

True

get_item_number

output
“WHAT IS THE ITEM NUMBER?”

input I1

return

Figure 16.3: main, load_data, and get_item_number

Chapter 16 Two-Dimensional Arrays 135

get_price

I1 =get_item_number()

X ← 0

X > R− 1

output
“ITEM”

I1
“NOT FOUND”

AX,0 = I1 P ← AX,0

X ← X + 1

output
“THE PRICE IS”

AX,1
“FOR ONE”

call
print_product_name

return

False

True

False

True

Figure 16.4: get_price subroutine

is a program that allows querying an inventory of items. The data available includes
the unit price and the quantity. Since Minimal BASIC does not support string
arrays, we must use a numeric product identifier for each product. Each row of
array A contains information about one product. The first column contains the
product identifier number, the second column contains the price, and the third
column contains the quantity. The rows are unsorted, so sequential search is used
when looking up items by their numeric product identifier. Since the maximum
number of rows is only 10, the O (n) performance of sequential search will not be a
problem to worry about for this program.
A record is a compound type composed of multiple units of data. In this chapter
we use one row of the matrix to represent one record. Each unit of data in a record
is called a field. When using a matrix row for a record, each field is stored in a
different column. So the first index of each matrix reference identifies the record
number, and the second index identifies the field. This allows using a matrix to
hold an array of records, even though ECMA-55 Minimal BASIC has no support
for records included in the language.
The program is structured into several subroutines to make it easier to read and
modify. Of course it is not possible to query data until it is loaded into the array,

136 Chapter 16 Two-Dimensional Arrays

get_quantity

I1 =get_item_number()

X ← 0

X > R− 1

output
“ITEM”

I1
“NOT FOUND”

AX,0 = I1 P ← AX,0

X ← X + 1

output
“YOU HAVE”

AX,2
“OF”

call
print_product_name

return

False

True

False

True

Figure 16.5: get_quantity subroutine

so the first subroutine called is the one to load the data on line 2000. The number
of rows is first read into the variable R, then the data for R rows, each with 3
columns, is read from DATA statements. After the data is loaded, it is time to ask
the user what information they want to see. The flowchart for load_data is shown
in figure 16.3 on page 134.

The subroutine for the main menu starts on line 1000. It displays the menu on
lines 1010 through 1050, then gets the user choice on lines 1060 through 1070.
That choice is checked to ensure it is in the range 1 through 4 inclusive on lines
1080 through 1110. If it invalid, a message is displayed and the subroutine then
lets the user try again. If it is valid, then the multi-way branch on line 1120 will
jump to appropriate lines to run the subroutines that implement the first three
choices, or to return from the subroutine if the user chooses to exit the program.
The flowchart for run_menu is shown in figure 16.6 on page 137.

The first menu choice allows the user to ask for the price of an item. The subroutine
to do this begins on line 4000. The subroutine first calls another subroutine on line
8000 to get the numeric product identifier, called the item number in this program,
from the user. The flowchart for get_item_number is shown in figure 16.3 on

Chapter 16 Two-Dimensional Arrays 137

run_menu

output
“MAIN MENU”

output
“1. GET PRICE OF ITEM”

output
“2. GET QUANTITY OF ITEM”

output
“3. PRINT REPORT”

output
“4. EXIT PROGRAM”

output
“WHAT DO YOU WANT TO DO?”

input C1

C1 > 0 output
“INVALID CHOICE”

C1 > 4

C1get_price

get_quantity print_report

return

False

True

True

False
1

2 3

4

Figure 16.6: run_menu subroutine

138 Chapter 16 Two-Dimensional Arrays

print_report

output " "
without newline

C ← 0

C > 2

output C
without newline

C ← C + 1

X ← 0

X > R− 1return

output
X " "

without newline

C ← 0

C > 2

output
AX,C

without newline

C ← C + 1

P ← AX,0

print_product_name

X ← X + 1

True

False

True

False

False

True

Figure 16.7: print_report subroutine

Chapter 16 Two-Dimensional Arrays 139

print_product_name

P = 7 output
“TINY DRINK CAN”

P = 3 output
“1.25L SODA POP”

P = 21 output
“PINEAPPLE TART”

P = 66 output
“CIGARETTE RED BOX”

P = 123 output
“ENERGY DRINK”

output
“UNKNOWN ITEM”

return

False

True

False

True

False

True

False

True

True

False

Figure 16.8: print_product_name subroutine

page 134. That subroutine puts the product identifier into the variable I1. Then it
returns and the program performs a sequential search through array A examining
the first column of each of the R rows to see if the product id in the first column
matches the product id stored in I1. This check is on line 6040. If the product
id is found in the array, then line 6050 stores that ID in the variable P which is
the parameter for the subroutine that prints the item name on line 3000. It then
prints the price on line 6060 and ends the print statement with a semicolon to
prevent a newline from being sent. The subroutine on line 3000 is then called
which will print the product name that corresponds to the product identifier stored
in the variable P using a long series of IF statements. An ON..GOTO statement
cannot be used since the values of P are not easily convertible to the sequence
1, 2, 3, . . . required to use that statement. The PRINT statements in the subroutine
that starts on line 3000 do not end with a semicolon or a comma, so they will send
the newline and finish the output line started in the subroutine on line 4000. The
flowchart for the get_price subroutine is shown in figure 16.4 on page 135. It calls

140 Chapter 16 Two-Dimensional Arrays

the get_item_number subroutine which has a flowchart shown in figure 16.3 on
page 134, and the print_product_name subroutine which has a flowchart shown in
figure 16.8.

The second menu choice allows the user to ask for the quantity of an item. The
subroutine to do this begins on line 6000 is essentially identical to the subroutine to
show the price of an item. The only difference is that column 2 is printed instead
of column 1, and the text message on line 6060 is a little bit different. It also
uses the subroutines at 8000 and 3000 in the same way as the subroutine at 4000
did. The flowchart for get_quantity is shown in figure 16.5 on page 136. Like
get_price, get_quantity calls the get_item_number which has a flowchart shown
in figure 16.3 on page 134, get_item_number subroutine which has a flowchart
shown in figure 16.3 on page 134, and the print_product_name subroutine which
has a flowchart shown in figure 16.8 on page 139.

The third menu choice allows the user to just display the entire table of data. The
subroutine to do this begins on line 2500. The column numbers are printed first on
lines 2510 through line 2550. Then the rows are printed one-by-one on lines 2560
through line 2630. Like the first and second menu choices, the product name is
displayed using the subroutine at 3000. The subroutine for print_report is shown
in figure 16.7 on page 138, and the subroutine to print the product name is the
same one as used in get_price and get_quantity and is shown in figure 16.8 on
page 139.

Chapter 16 Two-Dimensional Arrays 141

10 REM TWO-DIMENSIONAL READ-ONLY INVENTORY DEMO PROGRAM
20 REM
30 REM A THE ARRAY OF DATA
40 REM R THE NUMBER OF ROWS USED IN A
50 REM C1 MENU CHOICE ENTERED BY USER
60 REM X INDEX TO MOVE THROUGH ROWS IN A
70 REM C INDEX TO MOVE THROUGH COLUMNS IN A
80 REM P PRODUCT ID PARAMETER USED FOR PRINTING PRODUCT NAME
90 REM I1 PRODUCT ID PARAMETER USED FOR SEARCHING FOR PRODUCT
100 REM
110 REM *** MAIN ***
120 OPTION BASE 0
130 DIM A(9,2)
140 REM LOAD THE DATA
150 GOSUB 2000
160 REM RUN MENU UNTIL THEY QUIT
170 GOSUB 1000
180 STOP
190 REM
1000 REM *** MAIN MENU SUBROUTINE ***
1010 PRINT " MAIN MENU"
1020 PRINT "1. GET PRICE OF ITEM"
1030 PRINT "2. GET QUANTITY OF ITEM"
1040 PRINT "3. PRINT REPORT"
1050 PRINT "4. EXIT PROGRAM"
1060 PRINT "WHAT DO YOU WANT TO DO";
1070 INPUT C1
1080 IF C1>0 THEN 1110
1090 PRINT "INVALID CHOICE"
1100 GOTO 1010
1110 IF C1>4 THEN 1090
1120 ON C1 GOTO 1130,1160,1210,1190
1130 REM GET PRICE
1140 GOSUB 4000
1150 GOTO 1010
1160 REM GET QUANTITY
1170 GOSUB 6000
1180 GOTO 1010
1190 REM EXIT PROGRAM
1200 RETURN
1210 REM PRINT REPORT
1220 GOSUB 2500
1230 GOTO 1010
1240 REM
2000 REM *** LOAD DATA SUBROUTINE ***
2010 READ R
2020 FOR X=0 TO R-1
2030 FOR C=0 TO 2
2040 READ A(X,C)
2050 NEXT C
2060 NEXT X
2070 RETURN
2080 REM
2500 REM *** DISPLAY DATA SUBROUTINE ***
2510 PRINT " ";
2520 FOR C=0 TO 2
2530 PRINT C,
2540 NEXT C
2550 PRINT
2560 FOR X=0 TO R-1
2570 PRINT X;": ";
2580 FOR C=0 TO 2
2590 PRINT A(X,C),
2600 NEXT C
2610 LET P=A(X,0)
2620 GOSUB 3000
2630 NEXT X
2640 RETURN
2650 REM

Figure 16.9: Logical Array of Records program (1 of 2)

142 Chapter 16 Two-Dimensional Arrays

3000 REM *** PRINT PRODUCT NAME FOR PRODUCT P SUBROUTINE ***
3010 IF P<>7 THEN 3040
3020 PRINT "TINY DRINK CAN"
3030 RETURN
3040 IF P<>3 THEN 3070
3050 PRINT "1.25L SODA POP"
3060 RETURN
3070 IF P<>21 THEN 3100
3080 PRINT "PINEAPPLE TART"
3090 RETURN
3100 IF P<>66 THEN 3130
3110 PRINT "CIGARETTE RED BOX"
3120 RETURN
3130 IF P<>123 THEN 3160
3140 PRINT "ENERGY DRINK"
3150 RETURN
3160 PRINT "UNKNOWN ITEM"
3170 RETURN
3180 REM
4000 REM *** GET PRICE OF ITEM SUBROUTINE ***
4010 GOSUB 8000
4020 REM SEQUENTIAL SEARCH FOR ITEM I1
4030 FOR X=0 TO R-1
4040 IF A(X,0)<>I1 THEN 4090
4050 LET P=A(X,0)
4060 PRINT "THE PRICE IS";A(X,1);"FOR ONE ";
4070 GOSUB 3000
4080 GOTO 4110
4090 NEXT X
4100 PRINT "ITEM";I1;"NOT FOUND"
4110 RETURN
4120 REM
6000 REM *** GET QUANTITY OF ITEM SUBROUTINE ***
6010 GOSUB 8000
6020 REM SEQUENTIAL SEARCH FOR ITEM I1
6030 FOR X=0 TO R-1
6040 IF A(X,0)<>I1 THEN 6090
6050 LET P=A(X,0)
6060 PRINT "YOU HAVE";A(X,2);"OF ";
6070 GOSUB 3000
6080 GOTO 6110
6090 NEXT X
6100 PRINT "ITEM";I1;"NOT FOUND"
6110 RETURN
6120 REM
8000 REM *** GET ITEM NUMBER FROM USER SUBROUTINE ***
8010 PRINT "WHAT IS THE ITEM NUMBER";
8020 INPUT I1
8030 RETURN
8040 REM
9000 REM *** DATA ***
9010 REM NUMBER OF ROWS IN TABLE
9020 DATA 5
9030 REM ROW DATA (IN GROUPS OF 3 FIELDS)
9040 DATA 7,10,3,3,24,1,21,20,10,66,94,35
9050 DATA 123,10,1001
9999 END

Figure 16.10: Logical Array of Records program (2 of 2)

Chapter 16 Two-Dimensional Arrays 143

Exercises

1. Add two new items to the program shown in figure 16.9 on page 141 and
figure 16.10 on page 142 and then verify the program still works. The first
item to add is bologna, which has a unit price of 34 baht and a quantity of 10.
The second item to add is chips with a unit price of 20 baht and a quantity
of 2.

2. Convert the program shown in figure 16.9 on page 141 and figure 16.10 on
page 142 to use one-based array indexing.

3. Modify the program shown in figure 16.9 on page 141 and figure 16.10 on
page 142 to have an additional column for the unit cost of each item.

4. Modify the program shown in figure 16.9 on page 141 and figure 16.10 on
page 142 to sort the array by product ID after loading it, and to use binary
search for lookups.

Chapter 17

User-defined Functions

The ECMA-55 Minimal BASIC language has limited support for simple user-defined
functions. These functions can either have no parameter or exactly one scalar
numeric parameter, and they must fit on a single line. The function can return a
constant value or the value of any arithmetic expression that does not directly or
indirectly cause the function to call itself. An example program will help explain
the syntax and semantics. The parameter, if one exists, is local to the function, but
all other variables in any expression used by a user-defined function are globals.
User-defined functions are declared using the DEF keyword. The program shown in
figure 17.1 has two user-defined functions, FNP and FNY.

10 DEF FNP=3.1415926535
20 DEF FNY(X)=A*X^2+B*X+C
30 INPUT A,B,C
35 PRINT SIN(FNP/6),COS(FNP/6)
40 PRINT 3,FNY(3)
50 LET A=FNP/6
60 LET X=9
65 LET Z=3
70 PRINT SIN(A),COS(A)
80 PRINT Z,FNY(Z)
90 PRINT A,X
100 END

Figure 17.1: Example Using User-defined Functions

The FNP function defined on line 10 takes no argument and returns the constant
value for π. This is the only way to have something like a named constant value in
ECMA-55 Minimal BASIC. In the example program, the FNP function is called on
lines 35 and 50 to help generate the angle π

6 in radians. This is the typical way
that user-defined functions with no parameter are used. This has the advantage
of simulating a read-only constant, and it also means that if you have an error
in your constant, to fix it you only have to fix it once in the function definition
instead of many times where it is used in the program. The angle is then used
as an argument to the built-in SIN and COS functions which correspond to the
well-known mathematical sine and cosine functions respectively. Finally, for a

145

146 Chapter 17 User-defined Functions

constant value longer than 3 digits, this saves typing if you use the constant many
times in the program.

The FNY function defined on line 20 takes one argument X and returns the value
of the expression A×X2 + B×X + C, where the variables A, B, and C are global
variables and X is local to the function.1 This kind of user-defined function is often
used when you want to do something with an expression so that the subroutines
that do the main work can be written to call the user-defined function instead
of hard-coding the expression. Then it is easy for users to just change the DEF
expression to change the equation to be used.

? 1,2,3
.5 .866025
3 18
.5 .866025
3 13.7124
.523599 9

Figure 17.2: User-defined Functions Program Output

The output of 13.7124 might surprise you, but actually it demonstrates that the
value A used in FNY is a global variable, so the assignment on line 50 changed A
from 1 to π

6 (about 0.5235988), which in turn means that the return value of the
FNY function will change (for any X not zero).

However, the assignment on line 60 changed the global X, but the call to FNY
which has an X parameter variable did not alter the value of the global X, which
remains 9 when printed on line 90, even though it was clearly 3 when the FNY
function was evaluated on line 80.

Note well that the ECMA-55 Minimal BASIC standard specifies in section 10.4
that a function can only be defined once in a program. In practice, DEF statements
must only occur at the beginning of the program. A DEF statement must never
occur within the body of a FOR loop or within a subroutine. The control flow
through the program must carefully ensure that a DEF is never executed more than
once.

1This case (a parameter to a user-defined function) is the only exception to the rule that all
variables in ECMA-55 Minimal BASIC are global variables.

Chapter 17 User-defined Functions 147

Exercises

1. Write a flowchart to use the left Riemann sum to calculate
∫︁ b

a f(x)dx, where
f(x) = 0.1x2 + 0.1x, a = 1, and b = 3.

x

f(x)

0

1

2

0 1 2 3 4

f(x) = 0.1x2 + 0.1x

The gray area under the curve is the true area under the curve, but the sum
of the area of the rectangles approximates that value. In the picture shown,
the number of rectangles n is 10. As the number of rectangles increases by
choosing a larger value of n the accuracy will increase. The Left Riemann
sum for a function f(x) is calculated using the start of the interval a, the end
of the interval b, and the number rectangles n as follows:

w = (b− a)
n

n−1∑︂
i=0

Area of one rectangle⏟ ⏞⏞ ⏟
f(a + i ∗ w)⏞ ⏟⏟ ⏞
left side height

∗ w⏞⏟⏟⏞
width

In theory, the accuracy will increase as n increases, but limited machine
precision for the floating point math eventually causes problems when n
gets large enough. This technique is one form of numeric integration. For a
polynomial it is possible to compute the exact answer to the definite integral.
However, for more complicated functions numeric integration is one way
to calculate the definite integral you can use even if you cannot find the
anti-derivative of the function f(x).

2. Write a program, using the previous question’s flowchart to create a subroutine
for calculating the area under the curve for y = f(x), using a user-defined
function for f(x).

Chapter 18

Singly Linked Lists

Often when programming you will need to manipulate lists of data. Usually the
data has some unique identifier like part number, student id number, etc., and
some other data that may not be unique. The unique identifier serves as a key
value to access the rest of the data associated with that key. The set of all data
and a key together is traditionally stored in a record. Using data as lists of records
is a common programming task that every computer programmer must know. One
approach to storing lists using records was covered in chapter 16. Another method
for managing lists of records is called the singly linked list, and that is the method
that will be described in this chapter.

When storing a list of records as a singly linked list, each record is called a node, and
that node has one extra field added called the next pointer . One special variable is
called the head pointer and it points to the first node in the list. Each node then
points to the next node in the list. The final node uses a special next value called
the null pointer to indicate that there is no next node. The diagram in figure 18.1
shows conceptually what a linked list looks like.

Head
1 2 99 7 8 30 4 1 100

0 9 9

Id Qty Price Next

Figure 18.1: Singly Linked List

In figure 18.1 there are four nodes in the linked list, with key values 1, 4, 7, and
0. Each node contains a record with that key value in the Id field, and two other
fields of data for the quantity and unit price. The Head variable is used to point
the first node in the list. In many programming languages there is a special type
for records, and another special type for pointers. In ECMA-55 Minimal BASIC
there are no pointers or records. However, as long as all the data is numeric, it is
still possible to program using linked lists using low-level programming techniques.

149

150 Chapter 18 Singly Linked Lists

18.1 The Dynamic Memory Concept

When using linked lists, nodes must be allocated and deallocated from a memory
area which is traditionally called a heap.1 In a language with full dynamic memory
support, it is possible to allocate and deallocate different sized areas of memory.
Each of these areas of memory is called a block of memory. The runtime support
code that provides functions to allocate and deallocate memory is called the dynamic
memory manager.

When memory is allocated with an allocator function, the size desired is sent in as
a parameter, and a pointer to the block is returned. So what exactly is a pointer?
A pointer is just a variable which holds a number of the byte location in memory
where a block is located. A pointer is normally stored in a special variable called
a pointer variable. In chapter 4 you learned that a variable is just a name for a
location of data in memory. A pointer variable is a name for a location in memory
of where another location in memory is stored. A pointer is an indirect reference
to a memory location. In other words, a pointer variable is a variable that can
point to another location in memory. A normal variable such as a scalar variable
or an array variable always points to the same address, or location, in memory
for the entire duration of the program. A pointer variable, however, can point to
different locations in memory at different times. A programmer can change what
memory the pointer variable will access with a simple assignment statement.

You can see the difference between a pointer variable and a scalar variable in
figure 18.2 on page 151. In the figure, PointerV ar has the value 8184, so it
indirectly references the value 999. If you updated PointerV ar to have the
value 8200, it would instead indirectly access the value 13. In other words, the
PointerV ar variable does not hold a value directly like ScalarV ar, but instead
holds the address of another memory location.

Usually after you use an allocated memory block, you will be done with it and will
recycle it. This is achieved by moving the block to a special linked list called the
free list. The free list is a linked list of blocks in the heap that are not currently
being used, but can be used later. Each time you allocate a block, it is taken
from the free list, and each time you deallocate a block, it is returned to the free
list. When you want to return the block to the heap to be recycled, the pointer
must be sent in as a parameter to the function that deallocates the memory. A
variable with a special pointer type is normally used to hold the pointer value.
Each dynamically allocated block of memory is accessed using a pointer variable
which contains a pointer value that was returned by the allocation function.

For example, in C, the allocator function is called malloc, and the deallocator
function is called free. In C++, the allocator is implemented as the new operator,

1Some references use the name memory pool instead of heap.

18.1 The Dynamic Memory Concept 151

Start of
Address Space

End of
Address Space

8176

8184

8192

8200
ScalarV ar

PointerV ar

8208

8184

999

13

Figure 18.2: Pointer variables contain addresses that can be changed. Scalar variables are
aliases for constant addresses.

Free
? ? ? ? ? ? ? ? ?

? ? ? ? ? ?

Id Qty Price Next

Figure 18.3: Free List

and the deallocator is implemented as the delete operator. It is important to
remember to deallocate any block you are not using so that the heap will not
run out of memory for future allocation requests. One common error that can
occur when using dynamic memory is a case where memory was allocated, but not
deallocated, even though it is no longer used. This error is known as a memory
leak.

Some computer languages like Java and Go do not have a deallocate function
or method. Instead, they use a technique called garbage collection, where the
runtime system will keep track of the memory blocks allocated and automatically
deallocate them when the blocks are no longer used. This is less efficient than using
a deallocator function or method, but it makes memory leak errors impossible.
Another benefit of garbage collection is that programmers do not have to think
about how to ensure memory is recycled, especially when handling error cases.

In computer languages which are similar except for whether or not they use garbage
collection, it is much easier to write and debug programs in languages with garbage

152 Chapter 18 Singly Linked Lists

collectors. However, when using garbage collection, the generated executables are
not as efficient as correctly coded programs that use explicit deallocation. Whether
or not that efficiency versus ease of programming trade-off is acceptable depends on
many factors. This is the reason why languages like C and C++ that use explicit
memory deallocation are still used for some applications where performance of
the executable is critical, even though using explicit memory deallocation requires
more skill, effort, and time from programmers when writing those programs.

18.2 Storing a linked list in a matrix 153

18.2 Storing a linked list in a matrix

To store the nodes for the linked list, a matrix (a two-dimensional array) will be
used where each row is a node, and each column is a field of the record stored in
the node. That matrix will be the heap that will be used for the program. Since
Minimal BASIC does not have a pointer type, the normal numeric type scalar
variables will be used for the pointer variables. The address they store will not
be the usual memory addresses described earlier, but instead will be array index
values. In this program’s heap, all blocks are the same size, and each block is
accessed by its index, which serves as the pointer value. This system is simple, and
when a block is allocated, it is not necessary to specify the size because all blocks
are the same size. Each row of the array will hold one node. Those nodes hold one
record together with a next pointer. The fields of the records and the next pointer
are stored in column elements in the row. The values will be accessed as a record
with the fields stored in the columns. Nodes will be allocated and deallocated from
a heap conceptually, but in practice rows will actually be allocated and deallocated
from the array. Pointers will be used conceptually, but in practice array indices
will actually be used.

Index Identifier Quantity Price Next
0 1 2 3

0 1 2 99 2
1 4 1 100 3
2 7 8 30 1
3 0 9 9 -1
4 ? ? ? 5
5 ? ? ? 6
6 ? ? ? 7
7 ? ? ? 8
8 ? ? ? -1

Each row contains one node.

Head 0 Free 4

Figure 18.4: Singly linked list in a matrix

For the linked list of nodes shown in figure 18.1 on page 149, one column will be
needed for the Identifier, one column for the Quantity, one column for the unit
Price, and finally one column will be needed for the Next pointer. All of the fields
are numeric, so a matrix of numbers will work well. Remember, while the Next
pointer is logically holding a pointer, it is really holding an array index value for
the row of the array that is holding the next node in the linked list.

154 Chapter 18 Singly Linked Lists

The linked list in figure 18.1 on page 149 has been stored in the 4× 9 matrix shown
in figure 18.4 on page 153. Column 0 holds the unique identifier (the key), column
1 holds the quantity, column 2 holds the unit price, and column 3 holds the link to
the next node in the list. You will notice that the next value for rows 3 and 8 is
set to the value −1. Since array indices cannot be negative, the value −1 is used
to indicate a null pointer. A null pointer is a special pointer value that points to
nowhere. It is used when you have a pointer variable but you do not want it to
be pointing to any block of memory. For a next pointer of a linked list node, this
value means that there is no next node. This pointer to nowhere has many names
depending on what computer language you are using. In C it is called NULL, in
Pascal it is called nil, in C++ it is called nullptr, and in Java it is called null.
In ECMA-55 Minimal BASIC there are no pointers, but instead array indices are
being used. In the last node of any singly linked list, the next pointer must contain
the null pointer value to indicate that there are no more nodes in the list.

Once you have your data in the matrix, you may want to dump the matrix to verify
that the contents of the matrix are correct. You can make a small procedure to do
that, and then call the procedure after any changes to the linked list for debugging
purposes. A flowchart for a procedure to simply dump the contents of the matrix
in row order is shown in figure 18.5, and some ECMA-55 Minimal BASIC code
to implement dump_raw_storage is shown in figure 18.23 on page 175, lines 1030
through 1120.

dump_raw_storage(Free,n,Head)

i← 0

i < n?

output i, A[i, 0], A[i, 1],
A[i, 2], and A[i, 3]

i← i + 1

output Free, Head

returnTrue

False

Parameters
F ree Variable holding index of first node in the free

list
Head Variable holding index of first node in the

linked list
n Variable holding number of elements in

storage array

Local Variables
i Variable holding loop index

Global Variables
A Variable holding n× 4 matrix of node data

Column 0 is id, Column 1 is qty,
Column 2 is price, and Column 4 is next

Figure 18.5: dump_raw_storage procedure

18.3 Traversing the linked list 155

18.3 Traversing the linked list

Dumping the data with the dump_raw_storage function shows exactly how it is
stored in the matrix, but it will not show the linked list nodes in logical order (and
skip the unused nodes on the free list). To show the logical linked list in order,
a different method is needed. An appropriate flowchart is shown in figure 18.6
on page 156. The ECMA-55 Minimal BASIC code to implement print_nodes is
shown in figure 18.24 on page 176, lines 1630 through 1720.

The algorithm begins by creating a temporary pointer Temp and assigning to it
the value stored in the Head pointer. Next the algorithm checks to see if Temp is
NULL.2 If Temp is NULL, there are no more nodes in the list and the algorithm
ends. If Temp is not NULL, then the data in the record to which Temp points is
output, then Temp is assigned the value of the next field in the record, which points
to the next node in the linked list. The algorithm then loops back to the NULL
test. This loop will keep processing the nodes in the linked list in the proper order
until a Temp becomes NULL, and then exit. If the Head was NULL (because the
linked list has no nodes), this algorithm still works. This technique of processing
one node at a time and following the pointers is called traversing the linked list.3

2NULL is the null pointer.
3In some references, linked lists are called chains, and in those cases traversal is called following

the chain.

156 Chapter 18 Singly Linked Lists

print_nodes(Head)

Temp ← Head

Temp
is

NULL?

Output
Temp.id, Temp.qty,
and Temp.price

Temp← Temp.next

return

False

True

Parameter
Head Variable holding pointer to first node in the

linked list

Local Variables
T emp Variable holding pointer to current node

Figure 18.6: print_nodes procedure

18.4 Initializing the heap 157

18.4 Initializing the heap

But how can the data be loaded into the matrix in the first place? The solution
to this depends on how the program should work. If you want to start with an
empty list you would initialize the matrix so that all nodes are on the free list. A
flowchart to do that is shown in figure 18.7, and the ECMA-55 Minimal BASIC
code for initialize_storage is shown in figure 18.24 on page 176, lines 2090
through 2210.

On the other hand, if you want to preload some data, a different solution is needed.
A flowchart to preload the data which has been stored somewhere is given in
figure 18.8 on page 158. While ECMA-55 Minimal BASIC cannot access files, it
does allow storing information in DATA statements and fetching those values with
READ statements. ECMA-55 Minimal BASIC code to implement load_storage is
shown in figure 18.9 on page 158.

initialize_storage(Free,n)

i← 0

i < n?

A[i, 0]← −1
A[i, 1]← −1
A[i, 2]← −1
A[i, 3]← i + 1

i← i + 1

A[n− 1, 0]← −1
Free← 0

return
True

False

Parameters
F ree Variable holding index of first node in the free

list
n Variable holding number of elements in

storage array

Local Variables
i Variable holding loop index

Global Variables
A Variable holding n× 4 matrix of node data

Column 0 is id, Column 1 is qty,
Column 2 is price, and Column 4 is next

Figure 18.7: initialize_storage function

158 Chapter 18 Singly Linked Lists

load_storage(Free,n,Head)

i← 0

i < n?

read A[i, 0]
read A[i, 1]
read A[i, 2]
read A[i, 3]

i← i + 1

read Free
read Head

return
True

False

Parameters
F ree Variable holding index of first node in the free

list
Head Variable holding index of first node in the

linked list
n Variable holding number of elements in

storage array

Local Variables
i Variable holding loop index

Global Variables
A Variable holding n× 4 matrix of node data

Column 0 is id, Column 1 is qty,
Column 2 is price, and Column 4 is next

Figure 18.8: load_storage function

1000 REM LOAD_STORAGE
1010 REM N IS THE NUMBER OF ELEMENTS IN ARRAY A WHICH IS THE HEAP
1020 FOR I=0 TO N-1
1030 READ A(I,0),A(I,1),A(I,2),A(I,3)
1040 NEXT I
1050 READ H,F
1060 RETURN

Figure 18.9: BASIC code for load_storage

18.5 Accessing an individual node 159

18.5 Accessing an individual node

A common task for any linked list is to print the data in a node if you know the
primary key. A primary key is a unique value and it is an error for the same key to
occur more than once in the list. In the example used in this chapter, the primary
key is the identifier field. To print the data in a node for a specified identifier, the
index of the row in the matrix where the node with that identifier is stored must
be found by traversing the linked list. The algorithm must follow the links in the
linked list starting with the head until the node with the correct identifier is found.
This is quite similar to print_nodes, but only the data for the node matching the
identifier is shown, and once that is output, there is no need to continue following
the links in the linked list.

A function to use an identifier value to find the node is give in figure 18.10. The
find_node function does not actually display any data, but instead just returns
the pointer to the node, or NULL if there is no node with that identifier value in
the linked list. For a program in ECMA-55 Minimal BASIC, that pointer is the
index where the record containing that node is stored in our matrix. Once you
have a pointer to the node, printing the fields in the node is straight-forward. The
ECMA-55 Minimal BASIC code for find_node is shown in figure 18.23 on page
175, lines 1130 through 1240.

find_node(Head,id)

Temp ← Head

Temp
is

NULL?

Temp.id
is

id?
Temp← Temp.next return Temp

False

False True

True

Parameters
Head Variable holding pointer to

first node in the linked list
id Variable holding Identifier

value to find

Local Variables
T emp Variable holding pointer to

current node

Return Value
NULL Indicates identifier not found
index Index of row in matrix

containing node with desired
identifier

Figure 18.10: find_node function

160 Chapter 18 Singly Linked Lists

18.6 Updating field values of a node

A pointer to a node allows updating the values in data fields of that node. The
primary key value must not be updated, so in our example the identifier field must
not be updated. Obviously the pointer to the next node must not be updated either
because that would break the linked list. However, any other fields can be updated.
In the example in this chapter, this means that the quantity and unit price fields can
be updated. A flowchart to update the quantity is shown in figure 18.11, and the
ECMA-55 Minimal BASIC code to implement update_qty is shown in figure 18.23
on page 175, lines 1350 through 1480. A very similar flowchart to update the unit
price is shown in figure 18.12 on page 161, and the ECMA-55 Minimal BASIC
code to implement update_price is shown in figure 18.23 on page 175, lines 1490
through 1620. Both of these call the find_node function to get a pointer to the
node that will be updated. Since find_node might not succeed, it follows that
update_qty and update_price might not succeed either. The program must be
careful to check for these errors and report them back to the user if they occur.

update_qty(Head,id,qty)

Temp ← find_node(id)

Temp
is

NULL?
return False

Temp.qty ← qty

return True

False

True

Parameters
Head Variable holding pointer to first node in the

linked list
id Variable holding identifier value to update
qty Variable holding quantity value to update

Local Variables
T emp Variable holding pointer to current node

Return Values
F alse Update failed, identifier not found
T rue Update succeeded

Figure 18.11: update_qty function

18.6 Updating field values of a node 161

update_price(Head,id,price)

Temp ← find_node(id)

Temp
is

NULL?
return False

Temp.price← price

return True

False

True

Parameters
Head Variable holding pointer to first node in the

linked list
id Variable holding identifier value to update
price Variable holding price value to update

Local Variables
T emp Variable holding pointer to current node

Return Values
F alse Update failed, identifier not found
T rue Update succeeded

Figure 18.12: update_price function

162 Chapter 18 Singly Linked Lists

18.7 Appending a node to a linked list

Another common operation on linked lists is adding nodes to the end of the list.
Achieving this goal can be tricky because there are several special cases to consider:

1. The linked list is empty.
2. The free list is empty.
3. The identifier specified is already used for a node in the list.

The append_node function will take a node and remove it from the free list and
then add it to the end of the linked list pointed to by the head pointer. Finally
it will fill in the identifier, quantity, and unit price values. Appending can fail
if the free list has no nodes. Appending also must fail if a node with the same
primary key is already in the linked list. This error condition is called a duplicate
key. Finally, if the linked list is empty, the head pointer must be updated to point
to the node that was removed from the free list to create a new linked list.

A series of diagrams showing logically the operation of appending a linked node to
a linked list in the common case where the linked list and the free list are not empty
should help explain the concept. The example begins with the linked list shown in
figure 18.1 on page 149 and an new node with an identifier of 9, a quantity of 2,
and a unit price of 50 must be appended to the linked list. The first step would be
to find a pointer to the last node on the linked list. The second step would be to
allocate a node from the free list. The final step is to add that allocated node after
to the last node on the linked list and fill in that newly allocated node’s data fields.

The linked list pointed to by Head must be traversed in order to find the last
node. This is done by using two pointers, the Current pointer to the current node,
and the Previous pointer which points to the previous node. When the Current
pointer becomes NULL after traversing the last node, the Previous pointer will be
left pointing to the last node in the linked list. These steps are shown in figure 18.13
on page 163.

The free list is always accessed using the Free pointer, and to get a new node the
first node in the free list is taken and is used as the new node to add to the end of
the linked list. This is done by using a temporary pointer for the newly allocated
node called Current, and assigning to it the value of Free. Then the next step is
to remove that node from the free list by first updating the Free pointer to point
to the node after Current, and then setting the Current node’s next pointer to
NULL. These steps are shown in figure 18.14 on page 164.

Now that Current points to an allocated node removed from the free list, and we
have a Previous pointer that points to the last node in the linked list, the Current
node can finally be appended to the linked list. The next field of the node pointed

18.7 Appending a node to a linked list 163

Head
1 2 99

Current
7 8 30 4 1 100

0 9 9

Previous

Id Qty Price Next

Head
1 2 99

Previous
7 8 30

Current

4 1 100

0 9 9

Id Qty Price Next

Head
1 2 99 7 8 30

Previous

4 1 100

Current

0 9 9

Id Qty Price Next

Head
1 2 99 7 8 30 4 1 100

Previous

0 9 9
Current

Id Qty Price Next

Head
1 2 99

Id Qty Price Next

7 8 30 4 1 100

0 9 9
Previous

Current

Figure 18.13: Finding the last node in the linked list

164 Chapter 18 Singly Linked Lists

? ? ?
Free

Current ? ? ? ? ? ?

? ? ? ? ? ?

Id Qty Price Next

? ? ?
Current

? ? ?

Free

? ? ?

? ? ? ? ? ?

Next

? ? ?
Current Next

? ? ?
Free

? ? ? ? ? ?

? ? ?

Next

Figure 18.14: Allocating a node from the free list

to by Previous is assigned the value of the Current pointer, adding the node just
taken from the free list to the end of the linked list pointed to by Head. This is
shown in figure 18.15.

1 2 99
Head

7 8 30 4 1 100

0 9 9 ? ? ?

Previous Current

Id Qty Price Next

1 2 99
Head

7 8 30 4 1 100

0 9 9 9 2 50

Id Qty Price Next

Figure 18.15: Appending the node with identifier 9 to the linked list

The last step to do to complete the append operation is to fill in the identifier,
quantity, and unit price fields of the Current record with the values 9, 2, and 50

18.7 Appending a node to a linked list 165

respectively. Now the Current and Previous pointers are not needed, and the
node has been moved from the free list to the end of the linked list pointed to by
Head and the data fields have been updated, so the append is complete and the
result is shown in figure 18.15 on page 164.

While the diagrams make the append concept reasonably clear, a detailed algorithm
is needed to ensure everything is done step-by-step and that all of the special
cases are handled correctly. The flowchart in figure 18.16 on page 166 shows an
appropriate algorithm called append_node, and the ECMA-55 Minimal BASIC
code for append_node is shown in figure 18.24 on page 176, lines 1730 through
2080.

166 Chapter 18 Singly Linked Lists

append_node(Head,Free,id,qty,price)

Free
is

NULL?
return 0

Head
is

NULL?

check for
duplicate id
and find last
node in list

Previous← NULL
Current← Head

Current.id
is

id?
return 2

Previous← Current
Current← Current.next

Current
is

NULL?

Current← Free
Free← Free.next
Head← Current

Current.id← id
Current.qty ← qty
Current.price← price
Current.next← NULL

Current← Free
Free← Free.next
Previous.next← Current

return 1

False

True

False

True

True

False

TrueFalse

Parameters
Head Variable holding pointer to

first node in the linked list
F ree Variable holding pointer to

first node in the free list
id Variable holding identifier

value to append
qty Variable holding quantity

value to append
price Variable holding price value to

append

Local Variables
Current Variable holding pointer to

current node
P revious Variable holding pointer to

previous node

Return Values
0 Append failed, out of memory
1 Append succeeded
2 Append failed, duplicate

identifier

Figure 18.16: append_node function

18.8 Removing a node from a linked list 167

18.8 Removing a node from a linked list

Another common operation on linked lists is deleting nodes from the list. Achieving
this goal can be tricky because there are several special cases to consider:

1. The linked list is empty.
2. The identifier specified is not used by any node in the linked list.
3. The node to remove is the first node in the linked list.
4. The node to remove is the only node in the linked list.

A series of diagrams which show an example of deleting a node from a linked
list should make the algorithm easier to understand. The first step is to search
the linked list to find the node to remove, and its predecessor. A pointer to its
predecessor node is needed so that the program can update that predecessor node’s
next pointer to point to the node that comes after the node being deleted. The
node pointer of the node after the node being deleted is in the node being deleted’s
next field. The way to get pointers to the node which is to be deleted and its
predecessor is to use two pointers. One of those pointers points to the current
node being visited, and the other one points the last node that was visited. The
last node visited is the predecessor node of the current node. Each time the next
node is visited, both pointers are updated. Once the node whose identifier matches
the identifier to be removed is found, both pointers are set to the correct nodes.
This step-by-step process is shown in figure 18.17 on page 169, where the identifier
being sought is zero. Once it is found, that node is removed from the linked list by
updating the next pointer of the predecessor node to have the same value as the
next pointer of the node with identifier zero. The node with identifier zero then
has its next pointer set to NULL. At that point the linked list is updated, but the
node with identifier zero is not on the free list yet.

When a node is removed, its storage should be recycled so it can be used later
when a node is appended to the linked list. The way this recycling occurs is that
deleted nodes are prepend to the front of the free list. Prepending nodes is easier
than adding them to the end of the list. That is because it is not necessary to scan
the free list to find the last node. The deleted node is added to the front of the
free list instead of adding it to the end of the free list. The node with identifier
zero will have its next field updated to have the value of the free list pointer, which
points to the front of the free list. This creates a link from the end of the deleted
node to the head of the free list. The last step is to update the head of the free list
to point to the newly deleted node with identifier zero. At that point, the deleted
node has been prepended to the free list. This technique is shown in figure 18.18
on page 170.

168 Chapter 18 Singly Linked Lists

Describing all of these steps in words is rather long, but the technique itself is not
too difficult. As shown in figure 18.19 on page 170, the desired result has been
achieved.

While the diagrams make the delete concept reasonably clear, a detailed algorithm
is needed to ensure everything is done step-by-step and that all of the special
cases are handled correctly. The flowchart in figure 18.20 on page 171 shows an
appropriate algorithm called delete_node. The ECMA-55 Minimal BASIC code
for delete_node is shown in figure 18.25 on page 177, lines 2220 through 2470.

18.8 Removing a node from a linked list 169

Head
1 2 99 7 8 30 4 1 100

0 9 9 9 2 50

Id Qty Price Next

Head
1 2 99 7 8 30 4 1 100

0 9 9 9 2 50

Previous

Current

Id Qty Price Next

Head 1 2 99 7 8 30 4 1 100

0 9 9 9 2 50

Previous Current
Id Qty Price Next

Head
1 2 99 7 8 30 4 1 100

0 9 9 9 2 50

Previous Current
Id Qty Price Next

1 2 99
Head

7 8 30 4 1 100

0 9 9 9 2 50

Previous

Current

Id Qty Price Next

1 2 99
Head

0 9 9
Current

7 8 30 4 1 100

9 2 50

PreviousId Qty Price Next

Figure 18.17: Finding and removing node with identifier 0 from linked list

170 Chapter 18 Singly Linked Lists

0 9 9
Current

? ? ?

Free

? ? ?

? ? ? ? ? ?

Next

0 9 9
Current

? ? ?

Free

? ? ?

? ? ? ? ? ?

Next

0 9 9
Free

Current ? ? ? ? ? ?

? ? ? ? ? ?

Id Qty Price Next

Figure 18.18: Prepend deleted node to free list

Head
1 2 99 7 8 30 4 1 100

9 2 50

Id Qty Price Next

Free
0 9 9 ? ? ? ? ? ?

? ? ? ? ? ?

Id Qty Price Next

Figure 18.19: Linked list and free list after delete

18.8 Removing a node from a linked list 171

delete_node(Head,Free,id)

Head
is

NULL?

find node
and its
predecessor

Previous← NULL
Current← Head

Current.id
is

id?

Previous← Current
Current← Current.next

Current
is

NULL?

return False

Previous.next← Current.next

Previous
is

NULL?

Current.next← Free
Free← Current

Head← Current.next

return True

False

True

False

True

True

False

True

False

Parameters
Head Variable holding pointer to first node in the

linked list
F ree Variable holding pointer to first node in the

free list
id Variable holding identifier value to delete

Local Variables
Current Variable holding pointer to current node
P revious Variable holding pointer to previous node

Return Values
T rue Delete succeeded
F alse Delete failed, identifier not found

Figure 18.20: delete_node function

172 Chapter 18 Singly Linked Lists

18.9 Implementation in ECMA-55 Minimal BASIC

The theory behind dynamic memory and singly linked lists has been presented in
this chapter, together with the necessary details to implement a simple dynamic
memory manager using a matrix. The algorithms for common operations on linked
lists have been presented with detailed flowcharts as well. Once you put all of that
knowledge to work, you will be able to write programs which use singly linked
lists. A complete, working example program that demonstrates everything is shown
in figures 18.21 through 18.25 on pages 173-177. The example program has a
menu-driven interface, and implements every algorithm except load_storage. The
sample program uses separate subroutines for each of the seven different operations,
as well as one for initialize_storage. An index of subroutine locations is
provided in table 18.1.

BASIC Flowchart
Operation Lines Page Page

dump_raw_storage 1030-1120 175 154
find_node 1130-1240 175 159
update_qty 1350-1480 175 160
update_price 1490-1620 175 161
print_nodes 1630-1720 176 156
append_node 1730-2080 176 166
initialize_storage 2090-2210 176 157
delete_node 2220-2470 177 171

Table 18.1: Singly linked list demo subroutine locations

18.9 Implementation in ECMA-55 Minimal BASIC 173

10 REM LINKED LIST DEMO
20 REM ARRAY INDICES ARE ZERO-BASED
30 OPTION BASE 0
40 REM ARRAY A HAS 9 ROWS AND 4 COLUMNS AND IS THE HEAP
50 REM COLUMN 0 IS IDENTIFIER
60 REM COLUMN 1 IS QUANTITY
70 REM COLUMN 2 IS UNIT PRICE
80 REM COLUMN 3 IS NEXT
90 REM F IS HEAD OF FREE LIST IN HEAP
100 REM H IS HEAD OF LINKED LIST OF NODES
110 REM N IS NUMBER OF ROWS IN ARRAY A (NUMBER OF BLOCKS IN HEAP)
120 LET N=9
130 DIM A(8,3)
140 REM START OF MAIN
150 REM ******* INITIALIZE HEAP *******
160 GOSUB 2090
170 REM ******* SET HEAD TO NULL *******
180 LET H=-1
190 REM ******* SHOW MENU *********
200 GOSUB 2480
210 ON C GOTO 230,270,370,840,540,680,930,980
220 REM
230 REM ******* SHOW LIST *********
240 REM
250 GOSUB 1630
260 GOTO 190
270 REM ******* LOOKUP A NODE IN LIST *********
280 PRINT "WHAT IS THE NODE ID";
290 INPUT W
300 GOSUB 1130
310 IF T=-1 THEN 340
320 GOSUB 1250
330 GOTO 190
340 PRINT "NODE ";W;" NOT FOUND"
350 GOTO 190
360 REM
370 REM ******* APPEND A NODE TO LIST *********
380 REM
390 PRINT "WHAT IS THE NODE ID";
400 INPUT I9
410 PRINT "WHAT IS THE QUANTITY";
420 INPUT Q9
430 PRINT "WHAT IS THE PRICE";
440 INPUT P9
450 GOSUB 1730
460 ON R+1 GOTO 490,510,470
470 PRINT "ID ";I9;" IS ALREADY IN THE LIST"
480 GOTO 820
490 PRINT "OUT OF MEMORY"
500 GOTO 820
510 PRINT "APPEND OF ID=";I9;", QUANTITY=";Q9;", PRICE=";P9;" SUCCESSFUL"
520 GOTO 190
530 REM

Figure 18.21: BASIC code for singly linked lists (1 of 5)

174 Chapter 18 Singly Linked Lists

540 REM ******* UPDATE QUANTITY OF NODE IN LIST *********
550 REM
560 PRINT "WHAT IS THE NODE ID";
570 INPUT I0
580 PRINT "WHAT IS THE NEW QUANTITY";
590 INPUT Q0
600 PRINT "UPDATE ID=";I0;" QUANTITY=";Q0;
610 GOSUB 1350
620 IF R=1 THEN 650
630 PRINT " FAILED"
640 GOTO 660
650 PRINT "SUCCEEDED"
660 GOTO 190
670 REM
680 REM ******* UPDATE PRICE OF NODE IN LIST *********
690 REM
700 PRINT "WHAT IS THE NODE ID";
710 INPUT I0
720 PRINT "WHAT IS THE NEW PRICE";
730 INPUT P0
740 GOSUB 1490
750 PRINT "UPDATE ID=";I0;" PRICE=";P0;
760 IF R=1 THEN 790
770 PRINT " FAILED"
780 GOTO 800
790 PRINT " SUCCEEDED"
800 GOTO 190
810 REM
820 GOTO 190
830 REM
840 REM ******* DELETE A NODE FROM LIST *********
850 REM
860 PRINT "WHAT IS THE NODE ID";
870 INPUT I9
880 GOSUB 2220
890 IF R=1 THEN 900
894 PRINT "NODE ";I9;" NOT FOUND"
898 GOTO 190
900 PRINT "DELETE OF ID=";I9;" SUCCESSFUL"
910 GOTO 190
920 REM
930 REM ******* RAW DUMP OF HEAP INFORMATION (DEBUG) ********
940 REM
950 GOSUB 1030
960 GOTO 190
970 REM
980 REM ******* QUIT ********
990 REM
1000 STOP
1010 REM END MAIN

Figure 18.22: BASIC code for singly linked lists (2 of 5)

18.9 Implementation in ECMA-55 Minimal BASIC 175

1020 REM
1030 REM ******************************
1040 REM * DUMP_RAW_STORAGE PROCEDURE *
1050 REM ******************************
1060 FOR I=0 TO N-1
1070 PRINT I;":";A(I,0);",";A(I,1);
1080 PRINT ",";A(I,2);",";A(I,3)
1090 NEXT I
1100 PRINT "HEAD IS";H
1110 PRINT "FREE IS";F
1120 RETURN
1130 REM **********************
1140 REM * FIND_NODE FUNCTION *
1150 REM **********************
1160 REM W IS THE IDENTIFIER WE WANT
1170 REM RETURNS T WHICH IS ARRAY INDEX OF NODE
1180 REM WITH ID W, OR -1 IF NODE NOT FOUND
1190 LET T=H
1200 IF T=-1 THEN 1240
1210 IF A(T,0)=W THEN 1240
1220 LET T=A(T,3)
1230 GOTO 1200
1240 RETURN
1250 REM *****************
1260 REM * SHOW ONE NODE *
1270 REM *****************
1280 REM T IS THE POINTER TO THE NODE WHOSE DATA WILL BE DISPLAYED
1290 PRINT "ITEM FOUND IN SLOT";T
1300 PRINT "IDENTIFIER:";A(T,0)
1310 PRINT "QUANTITY :";A(T,1)
1320 PRINT "UNIT PRICE:";A(T,2)
1330 PRINT "NEXT :";A(T,3)
1340 RETURN
1350 REM ***********************
1360 REM * UPDATE_QTY FUNCTION *
1370 REM ***********************
1380 REM I0 IS ID
1390 REM Q0 IS QUANTITY
1400 REM R IS RETURN (0 IS FALSE, 1 IS TRUE)
1410 LET W=I0
1420 GOSUB 1130
1430 IF T=-1 THEN 1470
1440 LET A(T,1)=Q0
1450 LET R=1
1460 GOTO 1480
1470 LET R=0
1480 RETURN
1490 REM *************************
1500 REM * UPDATE_PRICE FUNCTION *
1510 REM *************************
1520 REM I0 IS ID
1530 REM P0 IS PRICE
1540 REM R IS RETURN (0 IS FALSE, 1 IS TRUE)
1550 LET W=I0
1560 GOSUB 1130
1570 IF T=-1 THEN 1610
1580 LET A(T,2)=P0
1590 LET R=1
1600 GOTO 1620
1610 LET R=0
1620 RETURN

Figure 18.23: BASIC code for singly linked lists (3 of 5)

176 Chapter 18 Singly Linked Lists

1630 REM *************************
1640 REM * PRINT_NODES PROCEDURE *
1650 REM *************************
1660 REM T0 IS TEMP
1670 LET T0=H
1680 IF T0=-1 THEN 1720
1690 PRINT A(T0,0),A(T0,1),A(T0,2)
1700 LET T0=A(T0,3)
1710 GOTO 1680
1720 RETURN
1730 REM ***************
1740 REM * APPEND_NODE *
1750 REM ***************
1760 REM I9 IS NEW IDENTIFIER
1770 REM Q9 IS NEW QUANTITY
1780 REM P9 IS NEW UNIT PRICE
1790 REM R IS RETURN (1 IS SUCCESS, 0 IS OOM, 2 IS DUPLICATE KEY)
1800 REM T1 IS POINTER TO CURRENT NODE
1810 REM T2 IS POINTER TO PREVIOUS NODE
1820 IF F<>-1 THEN 1850
1830 LET R=0
1840 GOTO 2080
1850 IF H=-1 THEN 2040
1860 LET T2=-1
1870 LET T1=H
1880 IF A(T1,0)<>I9 THEN 1910
1890 LET R=2
1900 GOTO 2080
1910 LET T2=T1
1920 LET T1=A(T1,3)
1930 IF T1=-1 THEN 1950
1940 GOTO 1880
1950 LET T1=F
1960 LET F=A(F,3)
1970 LET A(T2,3)=T1
1980 LET A(T1,0)=I9
1990 LET A(T1,1)=Q9
2000 LET A(T1,2)=P9
2010 LET A(T1,3)=-1
2020 LET R=1
2030 GOTO 2080
2040 LET T1=F
2050 LET F=A(F,3)
2060 LET H=T1
2070 GOTO 1980
2080 RETURN
2090 REM **********************
2100 REM * INITIALIZE_STORAGE *
2110 REM **********************
2120 REM N IS THE NUMBER OF ELEMENTS IN ARRAY A WHICH IS THE HEAP
2130 FOR I=0 TO N-1
2140 LET A(I,0)=-1
2150 LET A(I,1)=-1
2160 LET A(I,2)=-1
2170 LET A(I,3)=I+1
2180 NEXT I
2190 LET A(N-1,3)=-1
2200 LET F=0
2210 RETURN

Figure 18.24: BASIC code for singly linked lists (4 of 5)

18.9 Implementation in ECMA-55 Minimal BASIC 177

2220 REM ***************
2230 REM * DELETE_NODE *
2240 REM ***************
2250 REM I9 IS IDENTIFIER OF NODE TO DELETE
2260 REM R IS RETURN (1 IS SUCCESS, 0 IS FAILURE)
2270 REM T1 IS POINTER TO CURRENT NODE
2280 REM T2 IS POINTER TO PREVIOUS NODE
2290 REM EACH ROW IS DATA FOR ONE NODE
2300 IF H=-1 THEN 2460
2310 LET T2=-1
2320 LET T1=H
2330 IF A(T1,0)=I9 THEN 2380
2340 LET T2=T1
2350 LET T1=A(T1,3)
2360 IF T1<>-1 THEN 2330
2370 GOTO 2460
2380 IF T2=-1 THEN 2410
2390 LET A(T2,3)=A(T1,3)
2400 GOTO 2420
2410 LET H=A(T1,3)
2420 LET A(T1,3)=F
2430 LET F=T1
2440 LET R=1
2450 GOTO 2470
2460 LET R=0
2470 RETURN
2480 REM ***********************************
2490 REM * SHOW MAIN MENU AND GET A CHOICE *
2500 REM ***********************************
2510 PRINT " LINKED LIST MANAGER"
2520 PRINT
2530 PRINT "1. SHOW LIST"
2540 PRINT "2. LOOKUP A NODE IN LIST"
2550 PRINT "3. APPEND A NODE TO LIST"
2560 PRINT "4. DELETE A NODE FROM LIST"
2570 PRINT "5. UPDATE QUANTITY OF NODE IN LIST"
2580 PRINT "6. UPDATE PRICE OF NODE IN LIST"
2590 PRINT "7. RAW DUMP OF HEAP INFORMATION (DEBUG)"
2600 PRINT "8. QUIT"
2610 PRINT
2620 PRINT "WHAT DO YOU WANT TO DO";
2630 INPUT C
2640 IF INT(C)=C THEN 2680
2650 PRINT "INVALID INPUT!"
2660 PRINT
2670 GOTO 2510
2680 IF C<1 THEN 2650
2690 IF C>8 THEN 2650
2700 RETURN
2710 END

Figure 18.25: BASIC code for singly linked lists (5 of 5)

178 Chapter 18 Singly Linked Lists

Exercises

1. In this chapter, only one linked list pointed to by a special Head pointer has
been used. Actually, multiple linked lists can exist, all using one array for
storage and sharing one common free list. The update and delete flowcharts
do not need to be updated for this. Why will they still work?

2. If the linked list needed to be sorted, how could it be done? Draw a flowchart
for an appropriate algorithm, and then write a ECMA-55 Minimal BASIC
program and test it.

Chapter 19

Summary

This document has introduced you to all of the statements used in the ECMA-55
Minimal BASIC dialect of the BASIC language. Solutions for many mathematical
problems can be written using this dialect, and this dialect is for the most part
a subset of the popular classic microcomputer BASIC languages used such as
BASIC-80, BASICA, GWBASIC, etc. With the strong foundation you now have
after learning everything in this document, learning any of those other dialects will
not be difficult. Those dialects add many exciting features such as comprehensive
support for strings and string arrays, access to files on the disk, and more. Some
of them even give you the ability to write programs using graphics and sound.
But please don’t think you are limited to just the BASIC computer language.
Flowcharts are language-agnostic, and many languages available today are easy to
learn now that you understand the BASICs of programming.

179

Appendix A

The bas55 Interpreter

This appendix describes how to use the bas55 ECMA-55 Minimal BASIC inter-
preter program from Jorge Giner Cordero. The interpreter is available at his web
site https://jorgicor.niobe.org/bas55/ as a pre-compiled version for
Microsoft® Windows® or as a version for POSIX® systems like Linux®,
FreeBSD®, etc. that you can build from source. Alternatively, the source code
can be found on GitHub at https://github.com/jorgicor/bas55/releases.

Mr. Cordero’s web site has a great manual, but here is a simple sample session so
you can see what using bas55 is like, and learn the most important commands:

• RUN to run the current program.

• LIST to see the source code of the current program in proper order.

• LOAD to clear the current program, if any, and load the program stored in
the specified file.

• NEW to clear the current program.

• RENUM to renumber the current program.

• SAVE to save the current program to the specified file.

• QUIT to exit the interpreter, losing any current program.

The current program is the program that the interpreter has loaded into memory.
When you first start the interpreter, no program is loaded, but you can either type
in a program or use the LOAD command to load one from a file. Any changes you
make to the program, including using RENUM, are done to the current program.
When you exit bas55, those changes are lost. To keep such changes permanently,
you need to use the SAVE command to save the current program to a file. The
bas55 interpreter does warn you if you exit without saving and asks if you want
to discard the current program. If you answer y, the current program is lost and
bas55 exits. If you say n, then the quit is canceled and you have a chance to use

181

https://jorgicor.niobe.org/bas55/
https://github.com/jorgicor/bas55/releases

182 Appendix A The bas55 Interpreter

the SAVE command. If you already saved your file and did not make any changes
after that, then quit does not ask any questions and bas55 just exits immediately.

If you try to save to an existing file, bas55 will tell you the file already exists and
ask if you want to overwrite the existing file. If you answer y, the file’s existing
content is discarded and the current program is stored in the file, replacing the
old program. Any old data in the file is lost. If you answer n, then the SAVE does
nothing. This is a safety feature so you don’t accidentally overwrite an important
program. So you can SAVE on top of the old version, but you must confirm that is
what you really want to do before bas55 will let you do it.

Any line that begins with a line number is added to the program. If a line with
the same number already existed, that old line is replaced by the new one. If a
line number is typed without anything after it, then the line with that number in
the program is removed. The Ready. message tells you that the interpreter is now
ready and waiting for you to type something.

Appendix A The bas55 Interpreter 183

bas55 1.19

This is free software: you are free to change and redistribute it,
but there is NO WARRANTY. Type LICENSE to show the details.

Type HELP for a list of allowed commands.
Ready.
10 PRINT "BASIC IS EASY!"
20 END
RUN
BASIC IS EASY!
Ready.
LIST
10 PRINT "BASIC IS EASY!"
20 END
Ready.
SAVE "BIE.BAS"
Ready.
NEW
Ready.
LIST
Ready.
LOAD "BIE.BAS"
Ready.
LIST
10 PRINT "BASIC IS EASY!"
20 END
Ready.
20 PRINT "IS IT BREAK TIME YET?"
RUN
20: error: program must have an END statement
Ready.
30 END
RUN
BASIC IS EASY!
IS IT BREAK TIME YET?
Ready.
QUIT
Discard current program? (y/n)Y

Figure A.1: Sample bas55 session

NOTE 1: The bas55 interpreter initializes all numeric variables to zero and all string variables
to empty strings. This means that if you read an unintialized variable, the interpreter will use
a zero or empty string for numeric and string variable values respectively, and then continue
running the program. As of version 1.16, bas55 will issue a helpful warning for this issue, but
the program will keep running.

Appendix B

The ecma55 Compiler

This appendix describes how to use the ecma55 ECMA-55 Minimal BASIC compiler
program written by the author of this book. The compiler is available at the web site
http://sourceforge.net/projects/buraphakit/ and is distributed as source
code. It can be built on x86-64 Linux® systems, and the programs it creates run
on x86-64 Linux® systems.

After you download the source code, you will need to build it. The latest version
at the time this document was last updated was MinimalBASIC-2.40.tar.xz but
you might find a newer version has been released. If so, just change the version
number in these instructions and they should still work.

xz -dc MinimalBASIC-2.40.tar.xz | tar -x -v -f -
cd MinimalBASIC-2.40
make -fMakefile.gcc

To install the software so you can use it does not require root powers. Just manually
copy the files to your personal binary directory.

mkdir -p ${HOME}/bin
cp -a ecma55 BASICC BASICCS BASICCW ${HOME}/bin/

If your PATH does not include ${HOME}/bin, then you will need to add it in your
shell’s initialization file. For GNU bash, the ${HOME}/.profile file works great
and you can add a line like this:

export PATH="${PATH}:${HOME}/bin"

Then log out and log back in and things should work fine for you.

However, things are nicer if you can install them for all users. To install the software
so all users can use it you need to have root user power with either the traditional

185

http://sourceforge.net/projects/buraphakit/

186 Appendix B The ecma55 Compiler

su command or with the sudo command favored by many new distributions. Get
a root bash shell, then execute the following command:

make -fMakefile.gcc install

Using that command will put the binaries in /usr/local/bin and the manual
pages in /usr/local/man.

While the defaults work well for most people, it is possible to customize the
installation quite a bit. You can specify PREFIX to install into an alternate location
like this:

make -fMakefile.gcc install PREFIX=/opt/ecma55

Using that command will put the binaries in /opt/ecma55/bin and the manual
pages in /opt/ecma55/man.

Some systems want man pages in /usr/share/man and you can achieve that as
part of a standard installation with this command:

make -fMakefile.gcc install MANDIR=/usr/share/man/man1 PREFIX=/usr

Here is a sample session. Normally the TEST.BAS program would be entered using
a text editor like vi, but for this very short program the cat program is used
instead. The ‘$’ (dollar sign) is the system prompt from the Bourne-compatible
shell, which will be GNU bash on most Linux® systems.

$cat <<EOF >TEST.BAS
10 PRINT "BASIC IS EASY!"
20 PRINT "IS IT BREAK TIME YET?"
30 END
EOF
$BASICC TEST.BAS
$./TEST
BASIC IS EASY!
IS IT BREAK TIME YET?
$

Appendix C

BASIC Statements

This appendix has a list of all of the statements in ECMA-55 Minimal BASIC.
Each entry in the list briefly describes the syntax and semantics of the statement.
All keywords and expressions must be surrounded by at least one space except at
the end of the line where no trailing space is required.

DATA
The DATA statement is used to contain values that will be later used by the
READ statement. The form of the DATA statement is:

DATA value1,value2,...

After the DATA keyword, a list of one or more comma-delimited values must
be present. The values can be numeric literal values, double-quoted string
literal values, or unquoted strings. You should not use unquoted strings in
new programs. See the ECMA-55 Minimal BASIC standard for details of
unquoted strings if you encounter them in existing code. At program startup,
the logical read pointer points the first value in the lowest-numbered DATA
statement. Each time a value is read with the READ statement, this pointer
advances. It can be reset to the first value of the first1 DATA statement in the
program using the RESTORE statement. See chapter 11 for more information
and example programs.

1The first DATA statement is the DATA statement which has the lowest integral value for a line
number.

187

188 Appendix C BASIC Statements

DEF
The DEF statement is used to define a user-defined function of one numeric
variable or a pseudo-constant. The form of the DEF statement is:

DEF FNx = numeric_expression

or

DEF FNx (parameter) = numeric_expression

where x is one of the single letters between A and Z inclusive, and a parameter
is a scalar numeric variable. The first form of the DEF statement is rarely
used since the it can easily be replaced by a literal value, but can serve as
a pseudo-constant since it cannot be changed later, unlike a normal global
scalar variable.
In the second form of the DEF statement, the parameter is a local variable
that is only visible in the following numeric_expression, and it is distinct
from any global variable of the same name. There is no way to use the global
variable with the same name as the parameter in the numeric_expression of
a DEF statement, although all other global variables can be used.
Either form used to define a user-defined function must occur before any
call to it occurs to the corresponding user-defined function in the program.
Normally, the DEF statements, like DIM statements, occur at the beginning of
the program. The DEF statement declares the function, but otherwise does
nothing when it is executed. A user-defined function may call any built-in
or user-defined function except itself. Note, however, that any referenced
user-defined function must have already been defined. A user-defined function
may not be re-defined. See chapter 17 for more information and example
programs.

DIM
The DIM statement is used to specify non-default sizes of numeric arrays. The
form of the DIM statement is:

DIM declaration1,declaration2,...

and declarations come in two forms:

X(maxsubscript)
X(maxsubscript1,maxsubscript2)

where X is one of the 26 possible single-letter array variable names. The
first form is for one-dimensional arrays (vectors), and the second form is for
two-dimensional arrays (matrices). After the DIM keyword, a list of one or

Appendix C BASIC Statements 189

more comma-delimited array declarations is specified. Each array declaration
is an array name followed by a left parenthesis, then a non-negative integer
value. For a one-dimensional array, this is followed immediately by a right
parenthesis. For a two-dimensional array, this is followed by a comma,
another non-negative integer value, and then a right parenthesis. The highest
subscript permitted for the arrays is specified in the DIM statement. The lowest
subscript is zero unless OPTION BASE 1 was specified earlier in the program.
The maximum possible value of an array dimension is implementation-defined.
See chapter 10 for more information and example programs.

END
The END statement is used to specify the end of the source program, and it
must occur exactly once in the program on the last line of the source which
must have a line number higher than all other line numbers in the source
program. The general form of the END statement is:

END

The last line of the program must be an END statement, and it is a fatal error
if the last line of the program is not an END statement. It is also a fatal error
for any other line of the program to have an END statement. To exit the
program early, use the STOP statement. See chapter 1 for more information
and example programs.

FOR
The FOR statement is used for coding pre-test loops that use an index numeric
variable. A pre-test loop is a loop where the test to determine whether
to execute the loop body or exit the loop occurs at the start of the loop,
before the loop body. Every FOR statement must have a corresponding NEXT
statement using the same index numeric variable. The FOR statement comes
in two forms:

FOR varname=expression1 TO expression2 STEP expression3
FOR varname=expression1 TO expression2

The spaces shown are required. The upper-case words are reserved words,
the varname is any valid numeric scalar variable, and the expressions are
any valid numeric expressions. The behavior of the second form is identical
to the first form except that expression3 is automatically set to the value
1, since the default increment is 1. After the FOR statement, zero or more
statements may occur, followed by the corresponding NEXT statement which
has the form:

NEXT varname

190 Appendix C BASIC Statements

The same varname used as the loop index in the FOR statement must be used
in the corresponding NEXT statement. The FOR and NEXT statements are a
nicer way to write this:

LET limit = expression2
LET increment = expression3
LET varname = expression1

L1 IF (varname - limit) * SGN(increment) > 0 THEN L2
body of loop goes here

LET varname = varname + increment
GOTO L1

L2 REM

where L1 and L2 are line numbers, and limit and increment are special hidden
variables created by the BASIC implementation that are not accessible to
the programmer. See chapter 5 for more information and example programs.

GOSUB
The GOSUB statement is used to call a subroutine. The general form of the
GOSUB statement is:

GOSUB lineno

where lineno is a unsigned integer value specifying the line number of a line
that exists in the program. After the GOSUB keyword and a space, exactly one
existing line number must be specified. See chapter 13 for more information
and example programs.

GOTO
The GOTO statement is used to branch unconditionally to a new statement.
The general form of the GOTO statement is:

GOTO lineno

where lineno is a unsigned integer value specifying the line number of a line
that exists in the program. After the GOTO keyword and a space, exactly one
existing line number must be specified. See chapter 5 for more information
and example programs.

IF
The IF statement is used to branch conditionally to a new statement. The
general form of the IF statement is:

IF condition THEN lineno

Appendix C BASIC Statements 191

where lineno is an unsigned integer line number that exists in the program,
and condition follows this pattern:

expression relop expression

where relop is one of these six relational operators:

< <= = >= > <>

The IF keyword is followed by an expression, then a relational operator, then
another expressions, then the THEN keyword, and finally by a line number.
The types of the expressions must match so that both are numeric expressions
or both are strings. For strings, only equals and not equals are permitted.
At runtime, the expressions are evaluated, then compared using the specified
relational operator. If the expression is true, the program will branch to the
line number specified. If the expression is false, the program will do nothing
and continue with the line immediately following the IF statement. The line
number specified after the THEN keyword must exist in the program. See
chapter 7 for more information and example programs.

INPUT
The INPUT statement is used to read data into one or more variables from
the keyboard. The general form of the INPUT statement is:

INPUT v1, v2, ...

where vN is a scalar numeric variable, a scalar string variable, or a subscripted
numeric array variable. The INPUT keyword is followed by a space and then
one or more comma-delimited variable names. This will prompt the user
with a question mark, and then read values from the keyboard. For numeric
variables, numeric values must be used. Each input value is separated by a
comma. The number and types of value entered must match the number and
types of the variables in the list after the INPUT keyword. See chapter 3 for
more information and example programs.

LET
The LET statement is used to assign a value to a variable. The LET statement
comes in two forms:

LET stringvariable = stringliteral
LET numericvariable = numericexpression

In either case, the value on the right-hand side of the equals sign is computed
and stored in the variable specified between the LET keyword and the equals
sign. See chapter 3 for more information and example programs.

192 Appendix C BASIC Statements

NEXT
The NEXT statement is used to mark the end of the loop body for a FOR
statement. The general form of the NEXT statement is:

NEXT varname

where varname is a scalar numeric variable name specifying the loop index
that was specified in a corresponding preceding FOR statement. Every NEXT
statement must have a corresponding FOR statement using the same scalar
numeric variable for the index. See the FOR statement description for details.
See chapter 5 for more information and example programs.

ON
The ON statement is used to create a multi-way branch. The general form of
the ON statement is:

ON condition GOTO L1,L2,...

where condition is a numeric expression and L1, L2, etc. are unsigned integer
line numbers of lines that exist in the program. The ON keyword is followed by
a numeric expression, then the word GOTO, and finally by a list of one or more
comma-delimited line numbers. The line numbers must exist in the program.
The numeric expression is evaluated at runtime and then converted to an
integer. If it is 1, the program branches to the first line number specified. If
it is 2, the program branches to the second line number specified, etc. It is
an error if the expression evaluates to a number less than one, or a number
greater than the number of line numbers in the line number list after the GOTO
keyword. There must be at least one line number after the GOTO keyword.
See chapter 8 for more information and an example program.

OPTION
The OPTION statement is used to set the minimum array subscript to zero or
one. The form of the OPTION BASE statement is:

OPTION BASE X

Where X is either 0 or 1. The digit specifies the minimum array index
permitted for the program. The default is zero if no OPTION statement exists
in the program. This statement must occur before any array access or the DIM
statement, and it can occur only once. See chapter 10 for more information
and example programs.

PRINT
The PRINT statement is used to send output to the terminal. There are three
general forms of the PRINT statement:

Appendix C BASIC Statements 193

PRINT
PRINT expression1 delimiter1 ... expressionN
PRINT expression1 delimiter1 ... expressionN delimiterN

In the first form, any pending output is output if it exists, and a newline
is output. If no pending output exists, then this will output a blank line.
In the second form, one or more expressions are output and then a newline
is output. In the third form, one or more expressions are output and the
final delimiter marks the output as pending so no newline is output in most
cases.2.
Two possible delimiters exist, the comma and the semicolon. There are 5
equally-sized tabular columns of output. By default, output lines have 80
character columns. The 5 tabular columns have 16 characters each. The
comma will cause the output to advance to the next tabular column, and
the semicolon will advanced to the next character column. In the third form
with a trailing delimiter, the data is appended to the output buffer but not
printed until the output buffer has a full line of data.
Expressions are either numeric expressions, string literals, scalar string vari-
ables, or a special TAB() function. For string literals and scalar string
variables, the actual string contents are output without any enclosing double
quotes. For numeric expressions, the expression is evaluated to generate a
number, and then that number is output. Negative numbers have a leading
minus sign, and other numbers have a leading space. All numbers have a
trailing space. The TAB(X) function requires exactly one numeric argument
that will be used to indicate the desired character column X for the next
output. See chapter 9 for more information and example programs.

RANDOMIZE
The RANDOMIZE statement is used to seed the random number generator used
by the built-in RND function. The general form of the READ statement is:

RANDOMIZE

If RANDOMIZE is not used, the random number sequence generated by calls
to the built-in RND function will always be the same. The reason behind that
design feature of the ECMA-55 Minimal BASIC standard is to make testing
of programs using the RND function repeatable. When the program must
generate a different sequence of random numbers every time it is run, the
RANDOMIZE statement must be used in the program before any call of the
RND function. See chapter 7 for more information and example programs.

2The actual rules are very complex and depend on whether the pending output would exceed
the current output line width See the ECMA-55 Minimal BASIC standard for details.

194 Appendix C BASIC Statements

READ
The READ statement is used to read data from the in-program data stored in
the DATA statement(s). The general form of the READ statement is:

READ v1, v2, ...

where vN is a scalar numeric variable, a scalar string variable, or a subscripted
numeric array variable. After the READ keyword there must be a comma-
delimited list of one or more variables. A string variable can hold any
value, but a numeric variable can only hold a numeric value from a numeric
constant or a string that can be trivially converted to a numeric constant.
See chapter 11 for more information and example programs.

REM
The REM statement is used to add a comment to the source code of the
program. The form of the REM statement is:

REM UPPER-CASE COMMENT TEXT

The space after the REM keyword is required unless REM is immediately followed
by a newline. The text after that space can be any upper-case letters, any
digits, a space, single quote, double quote, and any character in this list:

():;<>$%_+-*/=^.?!

Note that all text in the comment, and in the program, must be valid 7-bit
ASCII as shown in table 1 of the ECMA-55 Minimal BASIC standard. See
chapter 4 for more information and example programs.

RESTORE
The RESTORE statement is used to reset the internal pointer used by the READ
and DATA statements back to the very first data item. The general form of
the RESTORE statement is:

RESTORE

See chapter 11 for more information and an example program.

RETURN
The RETURN statement is used to exit a subroutine that was entered with
GOSUB and continue execution on the line immediately following the GOSUB
that invoked the subroutine. The general form of the RETURN statement is:

RETURN

Appendix C BASIC Statements 195

It is a fatal error to attempt to execute a RETURN statement when no corre-
sponding GOSUB statement was executed. See chapter 13 for more information
and example programs.

STOP
The STOP statement will halt execution of the program immediately. The
general form of the STOP statement is:

STOP

Unlike the END statement, the STOP statement may occur multiple times and
on any line of the program except the very last line, which must be an END
statement. See chapter 12 for more information and an example program.

TAB()
The TAB() function requires exactly one numeric argument that will be
used to indicate the desired character column X for the next output. If the
position specified is less than the current position, the current buffered output
is displayed, and the output buffer is initialized to a value of X-1 spaces.
If the position specified is greater than the maximum display column M,
then the formula X −M×⌊X−1

M
⌋ will be used to compute the value actually

used. Most implementations use a value of 80 for M. The TAB() function can
only be used in a PRINT statement. The argument can be any valid numeric
expression that returns an integer value between 1 and M.3 See chapter 9 for
more information and example programs.

3The actual rules for TAB() are very complex; see the ECMA-55 Minimal BASIC standard
for complete details.

Appendix D

BASIC Numeric Functions

This appendix has a list of all of the numeric functions in ECMA-55 Minimal
BASIC. Each entry in the list briefly describes the input argument, if any, and the
return value of the function. Input arguments must be surrounded by parenthesis,
and no space between the function name and the left parenthesis is permitted.

ABS(X)
The ABS function takes exactly one numeric argument, and will return the
absolute value of the argument X. In math texts this is written as |x| and the
result if X is positive is that X is returned unchanged. If X is negative, then
−X is returned, yielding a positive value. The value returned is sometimes
called the magnitude of X.

ACOS(X)
The ACOS function takes exactly one numeric argument, and will return the
principal value of the arc cosine of X. The arc cosine of X is the angle θ whose
cosine is X, where −1 ≤ X ≤ 1. This function returns the principal value θ
of the arc cosine of X in radians, where −π

2 ≤ θ ≤ π
2 . This function is

only available when extensions are enabled with the -X option.

ANGLE(X,Y)
The ANGLE function takes exactly two numeric arguments, and will return the
angle in radians between the positive x-axis and the vector joining the origin
to the point with coordinates (X, Y), where−π < ANGLE(X, Y) ≤ π. X
and Y must not both be zero. Note that counterclockwise is positive. For
example, ANGLE(1,1) returns π

4 radians. This function is only available
when extensions are enabled with the -X option.

ASIN(X)
The ASIN function takes exactly one numeric argument and will return the
principal value of the arc sine of X. The arc sine of X is the angle θ whose
sine is X, where −1 ≤ X ≤ 1. This fnction returns the principal value θ of
the arc sine of X in radians, where −π

2 ≤ θ ≤ π
2 . This function is only

available when extensions are enabled with the -X option.

197

198 Appendix D BASIC Numeric Functions

ATN(X)
The ATN function takes exactly one numeric argument, and will return the
principal value of the arc tangent of X. The arg tangent of X is the angle
θ whose tangent is X, where −∞ ≤ X ≤ +∞. This function returns the
principal value θ of the arc tangent of X in radians, where −π

2 ≤ θ ≤ π
2 .

CEIL(X)
The CEIL function takes exactly one numeric argument, and will return the
smallest integral value that is not less than X. That is, it always rounds up,
so CEIL(0.5) is 1, and CEIL(-0.5) is 0. In math texts, this function is
written as ⌈x⌉ and is called the ceiling function. This function is only
available when extensions are enabled with the -X option.

COS(X)
The COS function takes exactly one numeric argument, and will return the
cosine of X, where the argument X is in expressed in radians. See chapter 17
for an example program.

COSH(X)
The COSH function takes exactly one numeric argument and will return the
hyperbolic cosine of X. This function is only available when extensions
are enabled with the -X option.

CSC(X)
The CSC function takes exactly one numeric argument, and will return the
cosecant of X, where the argument X is in expressed in radians. This
function is only available when extensions are enabled with the
-X option.

COT(X)
The COT function takes exactly one numeric argument, and will return the
cotangent of X, where the argument X is in expressed in radians. This
function is only available when extensions are enabled with the
-X option.

DATE
The DATE function takes no argument, and returns the current date as a
number in the form YYDDD, where YY are the last two digits of the year
and DDD is the current day of the year, with the first day being 001. For
example, on May 3, 2021 the result would have been 21123. This function
is only available when extensions are enabled with the -X option.

Appendix D BASIC Numeric Functions 199

DEG(A)
The DEG function takes exactly one numeric argument, an angle A in radians,
and will return the angle in degrees. For example, DEG(PI/2) returns 90.
You can do this with a user-defined function in pure ECMA-55 Minimal
BASIC using a function like this:

10 DEF FND(A) = A*180.0/3.141592653589793

However, that uses up one of your twenty-six user-defined functions, and
the function name is not very intuitive. This function is only available
when extensions are enabled with the -X option.

EXP(X)
The EXP function takes exactly one numeric argument, and will return eX ,
where e is the well known constant 2.71828 . . ., the base of natural logarithms.

FP(X)
The FP function takes exactly one numeric argument and returns the fractional
part. For example, FP(3.14159) returns 0.14159. You can do this with a
user-defined function in pure ECMA-55 Minimal BASIC using a function like
this:

10 DEF FNI(X)=X-SGN(X)*INT(ABS(X))

However, that uses up one of your twenty-six user-defined functions, and
the function name is not very intuitive. This function is only available
when extensions are enabled with the -X option.

INT(X)
The INT function takes exactly one numeric argument, and will return the
largest integer value not greater than the supplied numeric argument. That
is, it always rounds down, so INT(1.4) returns 1, and INT(-1.4) returns −2.
In math texts, this function is written as ⌊x⌋ and is called the floor function.

IP(X)
The IP function takes exactly one numeric argument and returns the integer
part. For example, IP(3.14159) returns 3. You can do this with a user-
defined function in pure ECMA-55 Minimal BASIC using a function like
this:

10 DEF FNI(X)=SGN(X)*INT(ABS(X))

However, that uses up one of your twenty-six user-defined functions, and
the function name is not very intuitive. This function is only available
when extensions are enabled with the -X option.

200 Appendix D BASIC Numeric Functions

LOG(X)
The LOG function takes exactly one numeric argument, and will return the
natural logarithm of X, where X > 0. It is a fatal error if X ≤ 0. In math
texts, this function is written as ln(x) .

LOG10(X)
The LOG10 function takes exactly one numeric argument, and will return
the base 10 logarithm of X, where X > 0. It is a fatal error if X ≤ 0. In
math texts, this function is written as log10(x) . This function is only
available when extensions are enabled with the -X option.

LOG2(X)
The LOG2 function takes exactly one numeric argument, and will return the
base 2 logarithm of X, where X > 0. It is a fatal error if X ≤ 0. In math
texts, this function is written as log2(x) . This function is only available
when extensions are enabled with the -X option.

MAX(X,Y)
The MAX function takes exactly two numeric arguments, and will return the
larger (algebraically) of the two values. For example, MAX(-3,-2) returns −2,
MAX(3,2) returns 3, and just for completeness, MAX(3,3) returns 3. This
function is only available when extensions are enabled with the
-X option.

MAXNUM
The MAXNUM function takes no argument, and will return the largest normal
floating point value which the compiler can support. Unlike most functions,
the MAXNUM function is essentially a named constant, so it can be used in a
DATA statement. You can achieve a similar effect with a user-defined function
in pure ECMA-55 Minimal BASIC using a function like this:

10 DEF FNM=2^1024*(1-2^53)

or if you are using using 32bit floats (-s option), you would use a function
like this:

10 DEF FNM=2^128*(1-2^24)

However, that uses up one of your twenty-six user-defined functions, the
function name is not very intuitive, and it cannot be used in a DATA statement.
This function is only available when extensions are enabled with
the -X option.

Appendix D BASIC Numeric Functions 201

MIN(X,Y)
The MIN function takes exactly two numeric arguments, and will return the
smaller (algebraically) of the two values. For example, MIN(-3,-2) returns
−3, MIN(3,2) returns 2, and just for completeness, MIN(-3,-3) returns −3.

MOD(X,Y)
The MOD function takes exactly two numeric arguments, and will return
something. The second argument cannot be zero. If it is, the program will
print an appropriate error message and terminate. For example, MOD(-5,3)
returns 1, MOD(-4.4,3.1) returns 1.8, and MOD(5,3) returns 2. The function
can be defined mathematically as:

MOD(X,Y) = X − Y ×
⌊︃

X

Y

⌋︃
, Y ̸= 0

This function is only available when extensions are enabled with
the -X option.

PI
The PI function takes no argument, and will return the floating point value
of π. Unlike most functions, the PI function is essentially a named constant,
so it can be used in a DATA statement. You can achieve a similar effect with
a user-defined function in pure ECMA-55 Minimal BASIC using a function
like this:

10 DEF FNP=3.141592653589793

However, that uses up one of your twenty-six user-defined functions, the
function name is not very intuitive, and it cannot be used in a DATA statement.
This function is only available when extensions are enabled with
the -X option.

RAD(A)
The RAD function takes exactly one numeric argument, an angle A in de-
grees, and will return the angle in radians. For example, RAD(90) returns
1.5707963267948966, which is approximately π

2 . You can do this with a
user-defined function in pure ECMA-55 Minimal BASIC using a function like
this:

10 DEF FNR(A) = A*3.141592653589793/180.0

However, that uses up one of your twenty-six user-defined functions, and
the function name is not very intuitive. This function is only available
when extensions are enabled with the -X option.

202 Appendix D BASIC Numeric Functions

REMAINDER(X,Y)
The REMAINDER function takes exactly two numeric arguments, and will return
the remainder of the division of the first argument by the second. The second
argument cannot be zero. If it is, the program will print an appropriate
error message and terminate. For example, REMAINDER(-5,3) returns −2,
REMAINDER(-4.4,3.1) returns −1.3, and REMAINDER(5,3) returns 2. The
function can be defined mathematically as:

REMAINDER(X,Y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X − Y ×

⌊︂
X
Y

⌋︂
, if Y ̸= 0, X > 0;

0, if Y ̸= 0, X = 0;
X − Y ×

⌈︂
X
Y

⌉︂
, if Y ̸= 0, X < 0.

This function is only available when extensions are enabled with
the -X option.

RND
The RND function takes no argument, and will return a pseudo-random floating
point value v in the range 0 ≤ v < 1. Note well: The sequence used will
always be the same unless the RANDOMIZE statement is executed before the
call to the RND function. See chapter 7 for more information and example
programs.

ROUND(X,N)
The ROUND function takes exactly two numeric arguments, and will return
the value of X rounded to N decimal digits to the right of the decimal point
(or -N digits to the left if N < 0). It is equivalent to this ECMA-116 Full
BASIC expression:

INT(X*10^N+.5)/10^N

This function is only available when extensions are enabled with
the -X option.

SEC(X)
The SEC function takes exactly one numeric argument, and will return the
secant of X, where the argument X is in expressed in radians. This function
is only available when extensions are enabled with the -X option.

SGN(X)
The SGN function takes exactly one numeric argument, and will return a value
indicating the sign of the argument. If X < 0, −1 is returned. If X > 0, 1
is returned. Finally, if X = 0, 0 is returned. In math texts, this function is
written as sgn(x) and is called the signum function.

Appendix D BASIC Numeric Functions 203

SIN(X)
The SIN function takes exactly one numeric argument, and will return the
sine of X, where the argument X is expressed in radians. See chapter 17 for
an example program.

SINH(X)
The SINH function takes exactly one numeric argument and will return the
hyperbolic sine of X. This function is only available when extensions
are enabled with the -X option.

SQR(X)
The SQR function takes exactly one numeric argument, and will return the
principal square root of the argument X where X ≥ 0. The case X < 0 is
a fatal error. In math texts, this function is written as

√
x and returns a

complex number for x < 0. Since Minimal BASIC does not support math
with complex numbers, negative values of X are not permitted. The square
root of x is the number which when squared will yield x:

(
√

x)2 = x

TAN(X)
The TAN function takes exactly one numeric argument, and will return the
tangent of X, where the argument X is expressed in radians. TAN(X) is not
defined for some values of X. The permitted values of X are those where
X ∈ ℜ | X ̸= (π/2 + k × π) for any integer k.

TANH(X)
The TANH function takes exactly one numeric argument and will return
the hyperbolic tangent of X. This function is only available when
extensions are enabled with the -X option.

TIME
The TIME function takes no argument, and returns the time elapsed since the
previous midnight, expressed in seconds, with the value of TIME at midnight
being zero. For example, the result of calling TIME at 01:02:50 would have
been 3770. This function is only available when extensions are
enabled with the -X option.

204 Appendix D BASIC Numeric Functions

TRUNCATE(X,N)
The TRUNCATE function takes exactly two numeric arguments, and will return
The value of X truncated to N decimal digits to the right of the decimal
point (or -N digits to the left if N<0). It is equivalent to this ECMA-116 Full
BASIC expression:

IP(X*10^N)/10^N

This function is only available when extensions are enabled with
the -X option.

Appendix E

Flowcharts

This appendix provides example flowcharts for all common flowchart shapes,
together with the ECMA-55 Minimal BASIC code to implement them. Some
flowcharts must be modified to allow easy implementation, and in those cases, the
modified flowcharts are also shown. The symbols used in this book are shown in
Table E.1.

Table E.1: Flowchart Symbols

Symbol Name Description Shape

Terminal These are used to show the start and stop
of a program or subroutine.

Process Used for assignment statements.

Input/Output Used for statements that read input or
write output.

Connector Used to connect disjoint parts of a
flowchart.

Decision Evaluates a condition and chooses an out-
put flowline based on the result.

Predefined
Process Invokes a subroutine.

Flowline Connects other symbols. Arrowhead shows
direction of logic flow.

Nested
Code

Used for nested code blocks like loop bodies
or true and false blocks in if and if/else
statements.

205

206 Appendix E Flowcharts

Let’s talk about some straight-line code now, as seen in Figure E.1.
Start

Output message
“Enter temperature in Celsius”

Input numeric value
into variable C

°F ← 32 + 9
5 °C

Output message
“Temperature in Fahrenheit is”
followed by value of variable F

Stop

Figure E.1: Algorithm flowchart for
converting °C to °F

10 REM CELSIUS TO FAHRENHEIT CONVERTER
20 REM
30 PRINT "ENTER TEMPERATURE IN CELSIUS";
40 INPUT C
50 LET F=32+(9/5)*C
60 PRINT "TEMPERATURE IN FAHRENHEIT IS";F
70 END

Figure E.2: Minimal BASIC program
for converting °C to °F

A flowchart is a special kind of directed graph, with geometric shapes as nodes and
lines with arrows on them representing the edges. The flowchart for the algorithm in
Figure E.1 is in the left-hand column. The corresponding Minimal BASIC program
is in the right-hand column in Figure E.2. Since the algorithm flowchart has no
diamonds, it is straight-line code. The Minimal BASIC program is easy to create
from the flowchart, with exactly one line of Minimal BASIC corresponding to each
flowchart node after the Start.

Notice that the INPUT and PRINT statements are in parallelograms, and the LET
statement is in a rectangle. These shapes are known as the Input/Output and
Process symbols, respectively. The beginning and END are in rounded rectangles,
which are known as Terminal symbols. Minimal BASIC programs always begin on
their first line, so the Start has no corresponding code in the program. All of the
symbols are connected with lines that have arrowheads indicating the direction of
logic flow. Those lines with arrowheads are called Flowlines.

The flowchart is programming language agnostic. That is, it doesn’t depend on or
specify the use of any particular programming language. Instead, it represents the
algorithm we want to implement. You can use the same flowchart to implement
the program in any reasonable procedual, iterative programming language.

Appendix E Flowcharts 207

condition

True
Block

True

False

Figure E.3: If flowchart

not
condition

True
Block

True

False

Figure E.4: If flowchart for Minimal BASIC
The flowchart in figure E.3 is re-implemented for Minimal BASIC in figure E.4.
Notice that not prefixes the original condition in the second flowchart. This
technique is sometimes referred to as flipping the condition. Instead of running
the True block when the condition is true, the logic says skip the True block when
the condition is not true. It is effectively the same thing, but the flipped condition
works better when you want to implement the program in the Minimal BASIC
language.

10 REM SIMPLE IF EXAMPLE
20 PRINT "DO YOU WANT THE TRUE BLOCK (Y/N)";
30 INPUT N$
40 IF N$<>"Y" THEN 60
50 PRINT "TRUE BLOCK"
60 END

Figure E.5: EX01.BAS

$./EX01
DO YOU WANT THE TRUE BLOCK (Y/N)? Y
TRUE BLOCK
$./EX01
DO YOU WANT THE TRUE BLOCK (Y/N)? N
$

Figure E.6: EX01.BAS runtime output

A Minimal BASIC version of the algorithm is implemented in Figure E.5, and the
runtime output is shown in Figure E.6. The True Block is one line, line 50. The
not condition is on line 40, and has the program jump over the True Block to line
60 if N$’s value is not “Y”.

The diamond is known as the Decision symbol. Decision symbols must have at
least two output Flowlines, but no other symbol can have multiple output Flowlines.
Start must not have any input Flowline. All other symbols can have multiple input
Flowlines.

208 Appendix E Flowcharts

condition

False
Block

True
Block

False True

Figure E.7: If with Else flowchart

not
condition

False
Block

True
Block

True False

Figure E.8: If with Else flowchart for Minimal BASIC

The flowchart in figure E.7 is re-implemented for Minimal BASIC in figure E.8. A
Minimal BASIC version of the algorithm is implemented in Figure E.9, and the
runtime output is shown in Figure E.10 on page 209.

10 REM IF X==4 WITH ELSE EXAMPLE
20 PRINT "ENTER X";
30 INPUT X
40 IF X <> 4 THEN 70
50 PRINT "TRUE BLOCK"
60 GOTO 80
70 PRINT "FALSE BLOCK"
80 END

Figure E.9: EX02.BAS

Appendix E Flowcharts 209

$./EX02
ENTER X? 3
FALSE BLOCK
$./EX02
ENTER X? 4
TRUE BLOCK
$

Figure E.10: EX02.BAS runtime output

210 Appendix E Flowcharts

Value of
ExpressionBlock 1

Block 2

Block 3 Block 4

Block 5

Error
Handler

Value
of 1

Value
of 2

Value
of 3

Value
of 4

Value
of 5

Other
Value

Figure E.11: Five-way branch flowchart

A Minimal BASIC version of the algorithm shown in Figure E.11 is implemented
in Figure E.12, and the runtime output is shown in Figure E.13.

10 REM MULTI-WAY BRANCH EXAMPLE
20 PRINT "ENTER VALUE";
30 INPUT V
40 IF V > 0 THEN 70
50 PRINT "ERROR HANDLER"
60 GOTO 190
70 IF V< 6 THEN 90
80 GOTO 50
90 ON V GOTO 100, 120, 140, 160, 180
100 PRINT "BLOCK 1"
110 GOTO 190
120 PRINT "BLOCK 2"
130 GOTO 190
140 PRINT "BLOCK 3"
150 GOTO 190
160 PRINT "BLOCK 4"
170 GOTO 190
180 PRINT "BLOCK 5"
190 END

Figure E.12: EX03.BAS

$./EX03
ENTER VALUE? 1
BLOCK 1
$./EX03
ENTER VALUE? 2
BLOCK 2
$./EX03
ENTER VALUE? 3
BLOCK 3
$./EX03
ENTER VALUE? 4
BLOCK 4
$./EX03
ENTER VALUE? 5
BLOCK 5
$./EX03
ENTER VALUE? 6
ERROR HANDLER
$./EX03
ENTER VALUE? 0
ERROR HANDLER
$

Figure E.13: EX03.BAS runtime output

Appendix E Flowcharts 211

condition

Loop
Body

True

False

Figure E.14: While Loop

not
condition

Loop
Body

False

True

Figure E.15: While Loop for Minimal BASIC
The flowchart in figure E.14 is re-implemented for Minimal BASIC in figure E.15.
The Minimal BASIC version of the algorithm is shown in figure E.16 and is
implemented with a forward jump over the loop body using a flipped condition. If
the condition is false, the flipped condition is true and the loop terminates. If the
condition is true, the flipped condition is false and the loop body is executed. This
is exactly the behavior of a While loop. The runtime output is shown in figure E.17
on page 212.

10 REM WHILE X <= 10 LOOP EXAMPLE
20 LET X=1
30 IF X > 10 THEN 90
40 REM BEGIN LOOP BODY
50 PRINT "LOOP ITERATION";X
60 LET X=X+1
70 REM END LOOP BODY
80 GOTO 30
90 PRINT "LOOP DONE"
100 END

Figure E.16: EX04.BAS

In the program example, the forward jump is implemented with the IF on line 30.
The loop body spans lines 40 through 70, and the GOTO on line 80 jumps back to
line 30 which has the IF with the loop condition test.

212 Appendix E Flowcharts

$./EX04
LOOP ITERATION 1
LOOP ITERATION 2
LOOP ITERATION 3
LOOP ITERATION 4
LOOP ITERATION 5
LOOP ITERATION 6
LOOP ITERATION 7
LOOP ITERATION 8
LOOP ITERATION 9
LOOP ITERATION 10
LOOP DONE
$

Figure E.17: EX04.BAS runtime output

Appendix E Flowcharts 213

Loop
Body

condition
True

False

Figure E.18: Do .. While loop
A Minimal BASIC version of the algorithm shown in Figure E.18 is implemented
in Figure E.19, and the runtime output is shown in Figure E.20.

10 REM DO .. WHILE I <= 10 EIAMPLE
20 LET I=1
30 REM BEGIN LOOP BODY
40 PRINT "LOOP ITERATION";I,"I=";I
50 LET I=I+1
60 REM END LOOP BODY
70 IF I<=10 THEN 30
80 PRINT "LOOP DONE"
90 END

Figure E.19: EX05.bas

$./EX05
LOOP ITERATION 1 I= 1
LOOP ITERATION 2 I= 2
LOOP ITERATION 3 I= 3
LOOP ITERATION 4 I= 4
LOOP ITERATION 5 I= 5
LOOP ITERATION 6 I= 6
LOOP ITERATION 7 I= 7
LOOP ITERATION 8 I= 8
LOOP ITERATION 9 I= 9
LOOP ITERATION 10 I= 10
LOOP DONE
$

Figure E.20: EX05.BAS runtime output

214 Appendix E Flowcharts

Loop
Body

condition
False

True

Figure E.21: Repeat .. Until Loop

Loop
Body

not
condition

True

False

Figure E.22: Repeat .. Until Loop for Minimal
BASIC

The flowchart in figure E.21 is re-implemented for Minimal BASIC in figure E.22.
You can see the condition in the diamond was flipped and the Minimal BASIC
code uses a backward jump with an IF statement to run the loop body if the
condition is false, which is exactly what a Repeat .. Until loop should do. The
Minimal BASIC version of the algorithm is implemented in Figure E.23, and the
corresponding runtime output is shown in Figure E.24.

10 REM REPEAT .. UNTIL I = 10 EXAMPLE
20 LET I=0
30 REM BEGIN LOOP BODY
40 LET I=I+1
50 PRINT "LOOP ITERATION";I,"I=";I
60 REM END LOOP BODY
70 IF I<>10 THEN 30
80 PRINT "LOOP DONE"
90 END

Figure E.23: EX06.BAS

$./EX06
LOOP ITERATION 1 I= 1
LOOP ITERATION 2 I= 2
LOOP ITERATION 3 I= 3
LOOP ITERATION 4 I= 4
LOOP ITERATION 5 I= 5
LOOP ITERATION 6 I= 6
LOOP ITERATION 7 I= 7
LOOP ITERATION 8 I= 8
LOOP ITERATION 9 I= 9
LOOP ITERATION 10 I= 10
LOOP DONE
$

Figure E.24: EX06.BAS runtime output

Appendix E Flowcharts 215

i = start

i ≤ limit

Loop
Body

i = i + increment

True

False

Figure E.25: Ascending Arithmetic For Loop

A Minimal BASIC version of the algorithm shown in Figure E.25 is implemented
in Figure E.26, and the runtime output is shown in Figure E.27.

10 REM ASCENDING ARITHMETIC FOR LOOP DEMO
20 FOR I=1 TO 10 STEP 1
30 PRINT "ITERATION";I,"I=";I
40 NEXT I
50 PRINT "LOOP DONE"
60 END

Figure E.26: EX07.BAS

$./EX07
ITERATION 1 I= 1
ITERATION 2 I= 2
ITERATION 3 I= 3
ITERATION 4 I= 4
ITERATION 5 I= 5
ITERATION 6 I= 6
ITERATION 7 I= 7
ITERATION 8 I= 8
ITERATION 9 I= 9
ITERATION 10 I= 10
LOOP DONE
$

Figure E.27: EX07.BAS runtime output

216 Appendix E Flowcharts

i = start

i ≥ limit

Loop
Body

i = i - decrement

True

False

Figure E.28: Descending Arithmetic For Loop

A Minimal BASIC version of the algorithm shown in Figure E.28 is implemented
in Figure E.29, and the runtime output is shown in Figure E.30.

10 REM DESCENDING ARITHMETIC FOR LOOP DEMO
20 FOR I=10 TO 1 STEP -1
30 PRINT "ITERATION";11-I,"I=";I
40 NEXT I
50 PRINT "LOOP DONE"
60 END

Figure E.29: EX08.BAS

$./EX08
ITERATION 1 I= 10
ITERATION 2 I= 9
ITERATION 3 I= 8
ITERATION 4 I= 7
ITERATION 5 I= 6
ITERATION 6 I= 5
ITERATION 7 I= 4
ITERATION 8 I= 3
ITERATION 9 I= 2
ITERATION 10 I= 1
LOOP DONE
$

Figure E.30: EX08.BAS runtime output

Appendix E Flowcharts 217

load_A

Body
of

subroutine
goes
here

Return

Figure E.31: Subroutine

load_A

Figure E.32: Subroutine Call

A Minimal BASIC program with a subroutine as shown in Figure E.31 and a call
as shown in Figure E.32 is implemented in Figure E.33, and the runtime output is
shown in Figure E.34.

10 REM SUBROUTINE DEMO
20 FOR I=1 TO 10 STEP 1
30 REM NEXT LINE IS SUBROUTINE CALL
40 GOSUB 80
50 NEXT I
60 PRINT "LOOP DONE"
70 STOP
80 REM SUBROUTINE
90 PRINT "ITERATION";I,"I=";I
100 RETURN
110 END

Figure E.33: EX09.BAS

$./EX09
ITERATION 1 I= 1
ITERATION 2 I= 2
ITERATION 3 I= 3
ITERATION 4 I= 4
ITERATION 5 I= 5
ITERATION 6 I= 6
ITERATION 7 I= 7
ITERATION 8 I= 8
ITERATION 9 I= 9
ITERATION 10 I= 10
LOOP DONE
$

Figure E.34: EX09.BAS runtime output

218 Appendix E Flowcharts

The subroutine example spans lines 80 through 100. It is called on line 40 inside
the loop body of the ascending arithmetic for loop. Each time the program reaches
the GOSUB on line 40, it will remember the next line is 50, then it will jump to line
80 and run until reaching the RETURN on line 100, at which point it will jump to
line 50 and continue the loop.

Appendix F

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

219

http://fsf.org/

220 Appendix F GNU Free Documentation License

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated
into another language.
A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a

Appendix F GNU Free Documentation License 221

publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that translates
XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

222 Appendix F GNU Free Documentation License

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network
location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

Appendix F GNU Free Documentation License 223

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

224 Appendix F GNU Free Documentation License

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements
of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

Appendix F GNU Free Documentation License 225

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”.
You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and indepen-
dent documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

226 Appendix F GNU Free Documentation License

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License,
and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60
days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this
is the first time you have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to 30 days after your
receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

Appendix F GNU Free Documentation License 227

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that
version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example
of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as
part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all
works that were first published under this License somewhere other than this MMC,
and subsequently incorporated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporated prior to November 1,
2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC
is eligible for relicensing.

ADDENDUM: How to use this License for your documents

http://www.gnu.org/copyleft/

228 Appendix F GNU Free Documentation License

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.

Index

ABS(), 197
absolute value, 197
ACOS(), 197
algorithm, 2, 9

append_node, 166
average, 80
bubble sort, 113
conversion

Celsius to Fahrenheit, 9
Fahrenheit to Celsius, 11

delete_node, 171
dump_raw_storage, 154
factorial, 37
Fibonacci sequence, 43
find_node, 159
initialize_storage, 157
load_storage, 158
maximum, 83
print_nodes, 156
search

binary, 121
sequential, 99

Taylor series
cosine, 47

update_price, 161
update_qty, 160

allocate, 150
angle, 197
ANGLE(), 197
append

singly linked list, 166
append_node, 166
arctangent, 198

arc cosine, 197
arc sine, 197, 198, 203
array, 79

DIM, 80
dimension, 133
element, 79
index, 79
integer-indexed, 79
matrix, 133
OPTION BASE, 83
size, 80
subscript, 79
vector, 79, 133

arrow, see flowchart
ASCII, 2
ASIN(), 197
assignment, 2

LET, 17
rectangle, 2

ATN(), 198
average, 80

bas55, 181
binary search, 121
block, 150
branch, 5

conditional, 22
diamond, 2
FOR, 31
IF, 28

jump target, 31
multi-way, 57, 58

using IF, 58
using ON. . . GOTO, 60

229

230 Index

unconditional, 31
GOSUB, 107
GOTO, 31

bubble sort, 113

call, 107
CEIL(), 198
ceiling, 198, 199, 201
Celsius, 9
connector, see flowchart, see flowchart

→ symbol → connector
constant, 18
COS(), 145, 198
COSH(), 198
cosine, 198, 202
COT(), 198
CSC(), 198

DATA, 91, see READ, RESTORE, 187
DATE, 198
deallocate, 150
debug, 13
decision, see flowchart → symbol →

decision
DEF, 145, 188
DEG(), 199
delete

singly linked list, 171
delete_node, 171
diamond, see flowchart
Dijkstra, Edsger W., xi
DIM, 80, 188
dimension, 133
double, 16
dump_raw_storage, 154
duplicate key, 162
dynamic memory manager, 150

ecma55, 185
extensions with -X

ACOS(), 197
ANGLE(), 197
ASIN(), 197

CEIL(), 198
COSH(), 198
COT(), 198
CSC(), 198
DATE, 198
DEG(), 199
FP(), 199
IP(), 199
LOG10(), 200
LOG2(), 200
MAX(), 200
MAXNUM, 200
MIN(), 201
MOD(), 201
PI, 201
RAD(), 201
REMAINDER(), 202
ROUND(), 202
SEC(), 202
SINH(), 203
TANH(), 203
TIME, 203
TRUNCATE(), 204

element, 79
END, 1, 11, 189
EXP(), 199
exponential function, 199

factorial, 37
Fahrenheit, 9
Fibonacci number, 43
field, 135
find_node, 159
flipping the condition, 207
floating point, 16
floor, 52, 199
floor function, 199, see INT
flowchart, 2, 205

arrow, 2
connector, 72
diamond, 2
parallelogram, 2

Index 231

predefined process symbol, 107
rectangle, 2
symbol, 205

connector, 205
decision, 205
flowline, 205
input/output, 205
predefined process, 205
process, 205
terminal, 205

terminal symbol, 2
flowline, see flowchart → symbol →

flowline
FOR, 31, see NEXT, STEP, TO, 189
FP(), 199
free list, 150
function

built-in math
ABS(), 197
ACOS(), 197
ANGLE(), 197
ASIN(), 197
ATN(), 198
CEIL(), 198
COS(), 198
COSH(), 198
COT(), 198
CSC(), 198
DATE, 198
DEG(), 199
EXP(), 199
FP(), 199
INT(), 52, 199
IP(), 199
LOG(), 200
LOG10(), 200
LOG2(), 200
MAX(), 200
MAXNUM, 200
MIN(), 201
MOD(), 201
PI, 201

RAD(), 201
REMAINDER(), 202
RND, 202
ROUND(), 202
SEC(), 202
SGN(), 202
SIN(), 203
SINH(), 203
SQR(), 203
TAN(), 203
TANH(), 203
TIME, 203
TRUNCATE(), 204

built-in text
TAB(), 193, 195

user-defined, 145

GOSUB, 107, 190
GOTO, 31, 190

hard-coded, 66, 94
head pointer, 149
heap, 150

initialize, 157
load, 158

IF, 3, 28, 190
index, see FOR, see loop, see subscript
initialize_storage, 157
INPUT, 9, 11, 191
input/output, see flowchart → symbol

→ input/output
INT(), 52, 199
integer-indexed array, 79
integer part, 199
invoke, see call
IP(), 199
iteration, 24, see STEP

jump target, 31

Kemeny, John George, 1
key, 159

232 Index

primary, 159
keyword, 1
Kurtz, Thomas Eugene, 1

LET, 3, 11, 191
line

number, 1
width, 2

line number, 1
linked list, see singly linked list
list

in DATA statements, 94
singly linked, 149

literal value, see constant
load_storage, 158
LOG(), 200
LOG10(), 200
LOG2(), 200
logarithm function, 200–202, 204
loop, 24

FOR, 189
index, 79
index variable, 31
iteration, 24
post-test, 24
pre-test, 31, 189

matrix, 133
MAX(), 200
maximum, 83
MAXNUM, 200
memory

block, 150
memory leak, 151
MIN(), 201
MOD(), 201
multi-way branch, 57, 58

using IF, 58
using ON. . . GOTO, 60

NEXT, 31, see FOR, STEP, TO, 192
next pointer, 149
node, 149

null pointer, 149

ON. . . GOTO, 60, 192
OPTION, 192

OPTION BASE, 83

parallelogram, see flowchart
PI, 201
pointer, 150
porting, 111
post-test loop, 24
pre-test loop, 31
predefined process, see flowchart →

symbol → predefined process
predefined process symbol, see flowchart
primary key, 159
PRINT, 3, 11, 192

comma delimiter, 63
semicolon delimiter, 42
TAB(), 193, 195

print_nodes, 156
process, see flowchart → symbol →

process
pseudo-random number, 52

RAD(), 201
RANDOMIZE, 52, see RND, 193
random number, see pseudo-random number
READ, 91, see DATA, RESTORE, 194
real number, 16
record, 135
rectangle, see flowchart
REM, 1, 3, 194
REMAINDER(), 202
RESTORE, 94, see DATA, READ, 194
RETURN, 107, 194
RND, 51, see RANDOMIZE, 202
ROUND(), 202

scalar, 16
search

binary, 121
sequential, 99

Index 233

singly linked list, 159
SEC(), 202
sentinel, 94
sequences, 21
sequential search, 99
SGN(), 202
signum function, 202
SIN(), 145, 203
sine, 203
singly linked list, 149

append, 166
delete, 171
search, 159
stored in a matrix, 153
traverse, 156
update, 160, 161

SINH(), 203
sort, see bubble sort
SQR(), 203
square root, 203
STEP, 32, see FOR, NEXT, TO
STOP, 104, 195
straight-line, 5
string, 16
subroutine, 107

call, 107
GOSUB, 107
RETURN, 107

subscript, see array
symbol, see flowchart → symbol

TAB(), 193, 195
TAN(), 203
tangent, 203
TANH(), 203
Taylor series, 47, 50
temperature, 9
terminal, see flowchart → symbol →

terminal
terminal symbol, see flowchart
THEN, 28, see IF
TIME, 203

TO, 32, see FOR, NEXT, STEP
traverse

singly linked list, 156
TRUNCATE(), 204

update
singly linked list, 160, 161

update_price, 161
update_qty, 160
user-defined function, 145, see DEF

variable, 15
vector, 79

	List of Figures
	List of Tables
	Preface
	Introduction
	HELLO, WORLD!
	Temperature Conversion
	Convert Celsius to Fahrenheit
	Convert Fahrenheit to Celsius

	Scalar Variables and Constants
	Generating Sequences
	Loops
	FOR Loops
	Summary

	More Series
	Factorials
	Fibonacci Numbers
	Taylor Series

	Random Numbers
	Multi-way Branching
	Implementation of multi-way branch using IF
	Implementation of multi-way branch using ON…GOTO

	Multicolumn Output
	First Draft
	Second Draft
	Third Draft
	Final Program

	Arrays
	Average Value
	Maximum Value
	More About Subscripts

	Including Data Within A Program
	A simple example using READ and DATA
	Three ways to read lists of data

	Sequential Search
	The Algorithm
	Implementation in ECMA-55 Minimal BASIC

	Subroutines
	Bubble Sort
	The Algorithm
	Implementation in ECMA-55 Minimal BASIC

	Binary Search
	Binary Search Example 1
	Binary Search Example 2
	Binary Search Example 3
	Binary Search in Detail
	Performance of Binary Search
	Implementation in ECMA-55 Minimal BASIC

	Two-Dimensional Arrays
	User-defined Functions
	Singly Linked Lists
	The Dynamic Memory Concept
	Storing a linked list in a matrix
	Traversing the linked list
	Initializing the heap
	Accessing an individual node
	Updating field values of a node
	Appending a node to a linked list
	Removing a node from a linked list
	Implementation in ECMA-55 Minimal BASIC

	Summary
	The bas55 Interpreter
	The ecma55 Compiler
	BASIC Statements
	BASIC Numeric Functions
	Flowcharts
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

	Index

